1. Transport- und Zuordnungsprobleme

Themen:

- Analyse der Problemstruktur
- Spezielle Varianten des Simplexalgorithmus für Transport- und Zuordnungsprobleme
- Bezug zur Graphentheorie

Transportproblem

siehe Beispiel 1.4 aus OR I

Definition 1.1. Das Optimierungsproblem

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

unter den Nebenbedingungen

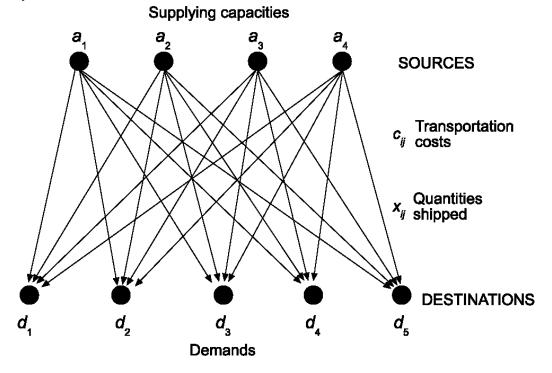
$$\sum_{j=1}^{n} x_{ij} = a_i \quad \text{für } i = 1, \dots, m$$

$$\sum_{i=1}^{n} x_{ij} = b_j \quad \text{für } j = 1, \dots, n$$

und den Vorzeichenbedingungen

$$x_{ij} \geq 0$$
 für $i = 1, \ldots, m$ und $j = 1, \ldots, n$

heißt Transportproblem.



Bemerkungen:

- Wir setzen ein geschlossenes Transportproblem voraus: $a_i > 0, b_j > 0$ und $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$, also Gesamtangebot = Gesamtnachfrage.
- Für den Fall $\sum_{i=1}^m a_i > \sum_{j=1}^n b_j$ führen wir ein zusätzliches Warenhaus mit $b_{n+1} = \sum_{i=1}^m a_i \sum_{j=1}^n b_j$ und $c_{i,n+1} = 0$ ein.
- Für den Fall $\sum_{i=1}^m a_i < \sum_{j=1}^n b_j$ führen wir eine zusätzliche Produktionsstätte mit $a_{m+1} = \sum_{j=1}^n b_j \sum_{i=1}^m a_i$ ein.

Die $c_{m+1,j}$ modellieren dann die Kosten pro ME für das mangelnde Angebot in Warenhaus j.

• Anzahl Variablen: $m \cdot n$

Beispielproblem

Beispiel 1.1. Wir gehen von folgenden Kosten, Angebot und Nachfrage aus:

	B_1	B_2	B_3	
$\overline{A_1}$	9	1	3	50
A_2	4	5	8	70
	40	40	40	

Damit lautet das zugehörige Transportproblem

$$\min 9x_{11} + x_{12} + 3x_{13} + 4x_{21} + 5x_{22} + 8x_{23}$$

unter den Nebenbedingungen

$$x_{11} + x_{12} + x_{13} = 50$$
 $x_{11} + x_{21} + x_{22} + x_{23} = 70$
 $x_{11} + x_{21} + x_{22} + x_{23} = 40$
 $x_{12} + x_{23} = 40$

und Vorzeichenbedingungen

$$x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \ge 0$$

Lösbarkeit des Transportproblems

Satz 1.1. Zu jedem Transportproblem existiert eine optimale Lösung.

Beweis: Es sei

$$G = \sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

und

$$x_{ij} = \frac{a_i b_j}{G}$$

Dann gilt:

$$\sum_{j=1}^{n} x_{ij} = \sum_{j=1}^{n} \frac{a_i b_j}{G} = \frac{a_i \sum_{j=1}^{n} b_j}{G} = a_i \quad \text{für } i = 1, \dots, m$$

und

$$\sum_{i=1}^{m} x_{ij} = \sum_{i=1}^{m} \frac{a_i b_j}{G} = \frac{b_j \sum_{i=1}^{m} a_i}{G} = b_j \quad \text{für } j = 1, \dots, n$$

Damit existiert eine zulässige Lösung.

Wegen $0 \le x_{ij} \le \min\{a_i, b_j\}$ ist der Zulässigkeitsbereich \mathcal{X} darüberhinaus beschränkt.

Also existiert eine optimale Lösung (siehe Satz 3.8 und Folie 174, OR I).

Transportproblem in Matrixdarstellung

$$\mathbf{A} = \begin{pmatrix} c_{11}, c_{12}, \dots, c_{1n}, c_{21}, \dots, c_{2n}, \dots, c_{m1}, \dots, c_{mn} \end{pmatrix} \in \mathbb{R}^{m \cdot n}$$

$$\mathbf{X} = (x_{11}, x_{12}, \dots, x_{1n}, x_{21}, \dots, x_{2n}, \dots, x_{m1}, \dots, x_{mn}) \in \mathbb{R}^{m \cdot n}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & \cdots & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & \cdots & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & \cdots & 1 \\ \hline 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ & & \ddots & & & \ddots & & \ddots & & \\ 0 & 0 & & 1 & 0 & 0 & & 1 & & & \\ \end{bmatrix} \in \mathbb{R}^{(m+n) \times m \cdot n}$$

genauer

$$a_{ij} = \begin{cases} 1 & \text{falls } 1 \leq i \leq m \land (i-1) \cdot n < j \leq i \cdot n \\ 1 & \text{falls } m < i \leq m+n \land j = k \cdot n + (i-m) \\ 0 & \text{sonst} \end{cases}$$

Begrenzungsvektor:

$$\mathbf{b} = (a_1, \dots, a_m, b_1, \dots, b_n) \in \mathbb{R}^{m+n}$$

Damit hat das Transportproblem in Normalform die Darstellung

$$\min \mathbf{c}^T \mathbf{x}$$

unter den Nebenbedingungen

$$Ax = b, x \ge 0$$

Satz 1.2. Die Matrix ${\bf A}$ des Transportproblems hat den Rang $r({\bf A})=m+n-1$.

Beweis: Die Summe der Zeilen 1 bis m ist gleich der Summe der Zeilen m+1 bis m+n. Also sind die m+n Zeilenvektoren linear abhängig und es folgt $r(\mathbf{A}) \leq m+n-1$.

Andererseits sind die m+n-1 Spaltenvektoren mit den Indizes

$$1, 2, \ldots, n, n+1, 2n+1, \ldots, (m-1)n+1$$

linear unabhängig, also $r(\mathbf{A}) \geq m + n - 1$.

Insgesamt folgt $r(\mathbf{A}) = m + n - 1$.

Eröffnungsverfahren

- Nach Satz 1.2 besteht eine Basislösung eines Transportproblems aus m+n-1 Basisvariablen.
- Zur Konstruktion einer ersten Ecke benötigen wir daher eine zulässige Lösung mit n+m-1 Variablen $x_{ij}>0$ und restlichen Variablen $x_{ij}=0$ (falls keine Entartung vorliegt).
- Wir stellen nun zwei Verfahren zur Konstruktion einer ersten zulässigen Basislösung bzw. Ecke vor:
 - Nordwesteckenregel
 - Minimale-Kosten-Regel

Transporttableau

		B_1			B_2		• • •		B_n		
A_1	c_{11}		B_{11}	c_{12}		B_{12}		c_{1n}		B_{1n}	a_1
		x_{11}			x_{12}				x_{1n}		
A_2	c_{21}		B_{21}	c_{22}		B_{22}		c_{2n}		B_{2n}	a_2
		x_{21}			x_{22}				x_{2n}		
:											:
A_m	c_{m1}		B_{m1}	c_{m2}		B_{m2}		c_{mn}		B_{mn}	
$rac{1}{m}$		x_{m1}			x_{m2}				x_{mn}		a_m
		b_1			b_2				b_n		z

- A_i : i-te Fabrik (bleibt unverändert)
- a_i : noch zu transportierende Menge aus Fabrik i
- B_j : j-tes Warenhaus (bleibt unverändert)
- b_j : noch zu transportierende Menge zu Warenhaus j
- c_{ij} : Kosten pro Einheit für den Transport von A_i zu B_j (bleibt unverändert)
- x_{ij} : Transportmenge von A_i nach B_j (nur für Basisvariablen gesetzt)
- B_{ij} : Schattenpreise (nur für Nichtbasisvariablen gesetzt)
- z: Zielfunktionswert

Nordwesteckenregel

Idee:

- Man transportiere über die Verbindung ganz links oben im Tableau so viel wie möglich.
- Wird dadurch das Lager erschöpft, streiche man die erste Zeile des Tableaus, ansonsten die erste Spalte, und beginne wieder mit dem ersten Schritt.

Algorithmus 1.1. [Nordwesteckenregel]

```
x_{ij} := 0 \text{ für } i = 1, \dots, m, j = 1, \dots, n
z := 0
i := 1, j := 1
while i \leq m and j \leq n do
     x_{ij} := \min\{a_i, b_j\}
     z := z + c_{ij}x_{ij}
     a_i := a_i - x_{ij}
     b_i := b_i - x_{ij}
     if a_i = 0 then
         i := i + 1
     else
         j := j + 1
     end
end
```

- Die tatsächlichen Kosten werden zur Auswahl der Basisvariablen nicht berücksichtigt, daher i.d.R. keine gute zulässige Lösung.
- Entartung, wenn in einer Iteration sowohl a_i als auch b_j gleich 0 werden. In der nächsten Iteration wird dann $x_{i+1,j}$ Basisvariable mit $x_{i+1,j} = 0$.
- In jeder Iteration wird genau eine Zeile oder Spalte "gestrichen", in letzter Iteration ist aber nur genau eine Spalte und genau eine Zeile übrig.
- Daher insgesamt m+n-1 Iterationen mit der Auswahl von m+n-1 Basisvariablen.
- Die B_{ij} betrachten wir erst später!

Beispiel 1.2. Wir gehen von Kosten, Angebot und Nachfrage gemäß Beispiel 1.1 aus.

Starttableau:

	B_1			B_2			B_3		
A_1	9	B_{11}	1		B_{12}	3		B_{13}	50
A_2	4	B_{21}	5		B_{22}	8		B_{23}	70
	40			40			40		0

1. Iteration: $x_{11} = 40, a_1 = 10, b_1 = 0, z = 360$

2. Iteration: $x_{12} = 10, a_1 = 0, b_2 = 30, z = 370$

3. Iteration: $x_{22} = 30, a_2 = 40, b_2 = 0, z = 520$

4. Iteration: $x_{23} = 40, a_2 = 0, b_3 = 0, z = 840$

Tableau nach Nordwesteckenregel:

	B_1			B_2		B_3		
A_1	9		1		3		B_{13}	0
	40			10				
A_2	4	B_{21}	5		8			0
112				30		40		
	0			0		0		840

Minimale-Kosten-Regel

- Statt die erste Möglichkeit links oben im Transporttableau wählt man unter den möglichen Variablen x_{ij} diejenige mit minimalen Kosten c_{ij} .
- Ansonsten verläuft der Algorithmus analog zur Nordwesteckenregel.
- I.d.R. erhalten wir eine bessere zulässige Basis als bei der Nordwesteckenregel, dies ist aber nicht garantiert.
- Typischer Greedy-Algorithmus: Treffe die lokal beste Entscheidung!

Algorithmus 1.2. [Minimale-Kosten-Regel]

```
x_{ij} := 0 \text{ für } i = 1, \dots, m, j = 1, \dots, n
I := \{1, \dots, m\}; J := \{1, \dots, n\}; z := 0
while I \neq \emptyset and J \neq \emptyset do
     wähle i und j so, dass c_{ij} = \min\{c_{lk}|l \in I, k \in J\}
     x_{ij} := \min\{a_i, b_j\}
     z := z + c_{ij}x_{ij}
     a_i := a_i - x_{ij}
     b_i := b_i - x_{ij}
     if a_i = 0 then
          I := I \setminus \{i\}
     else
          J := J \setminus \{j\}
     end
end
```

Beispiel 1.3.

1. Iteration:

$$i = 1, j = 2, x_{12} = 40, a_1 = 10, b_2 = 0, I = \{1, 2\}, J = \{1, 3\}, z = 40$$

2. Iteration:

$$i = 1, j = 3, x_{13} = 10, a_1 = 0, b_3 = 30, I = \{2\}, J = \{1, 3\}, z = 70$$

3. Iteration:

$$i = 2, j = 1, x_{21} = 40, a_2 = 30, b_1 = 0, I = \{2\}, J = \{3\}, z = 230$$

4. Iteration:

$$i = 2, j = 3, x_{23} = 30, a_2 = 0, b_3 = 30, I = \emptyset, J = \emptyset, z = 470$$

Tableau nach Minimale-Kosten-Regel:

	B_1			B_2			B_3	
A_1	9	B_{11}	1			3		0
				40			10	
A_2	4		5		B_{22}	8		0
712	40						30	U
	0			0			0	470