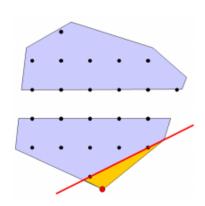
Kapitel 3

Branch-and-Bound und Varianten



Inhalt

- 3 Branch-and-Bound und Varianten
 - Branch-and-Bound
 - Anwendungsbeispiele
 - Branch-and-Cut

Schranken (1)

Definition 3.1

Gegeben sei ein Maximierungsproblem der Art

$$\max F(\mathbf{x})$$
, u.d.N. $\mathbf{x} \in \mathcal{X}$

Gilt

$$F(\mathbf{x}) \leq B_{up}$$
 für alle $\mathbf{x} \in \mathcal{X}$

dann ist B_{up} eine obere Schranke für den optimalen Zielfunktionswert.

Gilt

$$F(\mathbf{x}) \geq B_{low}$$
 für ein $\mathbf{x} \in \mathcal{X}$

dann ist Blow eine untere Schranke für den optimalen Zielfunktionswert.

Schranken (2)

Definition 3.2

Gegeben sein ein Minimierungsproblem der Art

$$\min F(\mathbf{x}), \quad \text{u.d.N. } \mathbf{x} \in \mathcal{X}$$

Gilt

$$F(\mathbf{x}) \geq B_{low}$$
 für alle $\mathbf{x} \in \mathcal{X}$

dann ist B_{low} eine untere Schranke für den optimalen Zielfunktionswert.

Gilt

$$F(\mathbf{x}) \leq B_{up}$$
 für ein $\mathbf{x} \in \mathcal{X}$

dann ist B_{up} eine obere Schranke für den optimalen Zielfunktionswert.

Herleitung von Schranken

Für Maximierungsprobleme:

- obere Schranken
 typischerweise durch Relaxationen, z.B. LP-Relaxation bei einem ILP
- untere Schranken durch zulässige i.d.R. aber nicht optimale Lösungen, z.B. auf der Basis von Heuristiken

Für Minimierungsprobleme: genau umgekehrt

Wenn nicht anders erwähnt betrachten wir im Folgenden stets Maximierungsprobleme.

Grundprinzip von Branch-and-Bound

Suchverfahren, das die Menge \mathcal{X} der zulässigen Lösungen systematisch durchsucht.

Wesentliche Operationen bei der Suche:

- Verzweigung (Branch)
 - Teile das Ausgangsproblem P_0 (bzw. die Menge $\mathcal{X}(P_0)$ der zulässigen Lösungen) in zwei Teilprobleme P_1 und P_2 (bzw. Teilmengen $\mathcal{X}(P_1)$ und $\mathcal{X}(P_2)$) auf.
- Beschränkung (Bound)
 - Berechne für die Teilprobleme P_1 und P_2 obere Schranken (upper bound) B_{up}^1 und B_{up}^2 für die optimale Lösung in $\mathcal{X}(P_1)$ und in $\mathcal{X}(P_2)$.

Nutzung von Schranken für die Suche (1)

Es sei B_{low} eine bekannte untere Schranke für $\mathcal{X}(P_0)$, z.B. der Zielfunktionswert einer bekannten zulässigen Lösung \mathbf{x} .

Dann gilt:

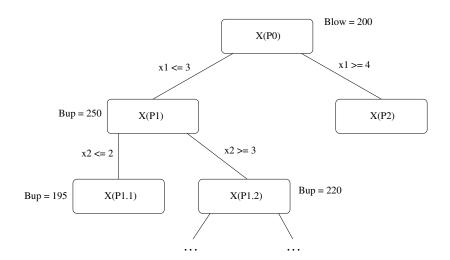
- Aus $B_{up}^1 \leq B_{low}$ folgt, dass $\mathcal{X}(P_1)$ keine bessere Lösung als \mathbf{x} enthalten kann.
- Analog für $B_{up}^2 \leq B_{low}$

Im Fall von $B_{up}^1 \leq B_{low}$ bzw. $B_{up}^2 \leq B_{low}$ müssen wir in $\mathcal{X}(P_1)$ bzw. $\mathcal{X}(P_2)$ nicht mehr nach einer optimalen Lösung suchen.

Nutzung von Schranken für die Suche (2)

- Es sei B_{up} eine bekannte obere Schranke für \mathcal{X} .
- Findet man ein $\mathbf{x} \in \mathcal{X}$ mit $F(\mathbf{x}) = B_{up}$, dann ist \mathbf{x} eine optimale Lösung.

Branch-and-Bound: Prinzipieller Ablauf für ein ILP



Beispiele: Branch-and-Bound für ILP

Beispiel 3.3

Wir wollen das ILP von Beispiel 2.2 lösen. Es sei dies das Problem P_0 .

Die LP-Relaxation hat die optimale Lösung $(\frac{9}{4}, \frac{5}{2})$ mit Zielfunktionswert $\frac{29}{4}$. Dies liefert uns eine allgemeine obere Schranke $B_{up} = \left\lfloor \frac{29}{4} \right\rfloor = 7$.

Wir unterteilen das Problem P_0 in zwei disjunkte Teilprobleme:

- Für P_1 gelte die zusätzliche Bedingung $x_1 \ge 3$.
- Für P_2 gelte die zusätzliche Bedingung $x_1 \le 2$.

Für die LP-Relaxation von P_1 erhalten wir die optimale Lösung $\mathbf{x}^1 = (3,2)$ mit Zielfunktionswert 7.

- Damit haben wir eine zulässige Lösung gefunden, deren Zielfunktionswert mit $B_{up}=7$ übereinstimmt.
- Somit ist \mathbf{x}^1 eine optimale Lösung für P_0 .

Fortsetzung Beispiel.

Wir brauchen P_2 nicht mehr zu lösen. Wenn wir trotzdem die zugehörige LP-Relaxation lösen,

- können wir $B_{low} = 7$ setzen, da \mathbf{x}^1 eine zulässige Lösung ist und
- wir erhalten $\mathbf{x}^2 = (2, \frac{5}{2})$ mit Zielfunktionswert $B_{up}^2 = 7 \le B_{low}$ als optimale Lösung für die LP-Relaxation von P_2 .
- Hieraus folgt, dass in $\mathcal{X}(P_2)$ keine bessere Lösung als \mathbf{x}^1 enthalten sein kann.

Beispiel 3.4

Wir betrachten das ILP

$$\max x_1 + x_2$$

unter den Neben- und Vorzeichenbedingungen

$$\begin{array}{rcl}
4x_1 & + & x_2 & \leq & 20 \\
 & & 4x_2 & \leq & 10 \\
2x_1 & + & 3x_2 & \leq & 12 \\
 & & x_1, x_2 & \geq & 0 \\
 & & x_1, x_2 & \in & \mathbb{Z}
\end{array}$$

Tafel 🐿

Beispiel 3.5 (Winston, Kapitel 9.3)

Die Telfa Corporation produziert Tische und Stühle.

Für die Produktion eines Tisches werden eine Arbeitsstunde und 9 Quadratmeter Holz benötigt, ein Stuhl erfordert eine Arbeitsstunde und 5 Quadratmeter Holz. Es stehen 6 Arbeitsstunden und 45 Quadratmeter Holz zur Verfügung.

Der Gewinn für einen Tisch beträgt 8 €, für einen Stuhl 5 €.

Tafel 🐿

Beispiel 3.6 (Nickel et al., Kapitel 5.4.1)

Gegeben sei das ILP

$$\max 5x_1 + 2x_2$$

unter den Neben- und Vorzeichenbedingungen

Tafel: Mit Selektionsstrategie "Maximum Upper Bound"



Was brauchen wir für Branch-and-Bound?

- Verzweigungsregel: Wie teilen wir die Menge der zulässigen Lösungen auf?
- Obere Schranke: Effizientes Verfahren zur Berechnung einer oberen Schranke für ein Teilproblem, z.B. eine geeignete LP-Relaxation.
- Optionale untere Schranke: Eine Heuristik zur Ermittlung einer guten zulässigen Lösung für ein Teilproblem (üblicherweise auf Basis der optimalen Lösung des relaxierten Problems).
- Selektionsstrategie: In welcher Reihenfolge werden Teilprobleme abgearbeitet? Tiefensuche? Breitensuche? Gesteuert durch die oberen Schranken?

Verzweigung (Branch)

• Ein Problem P_0 wird in k Teilprobleme P_1, \ldots, P_k unterteilt, so dass für die Mengen $\mathcal{X}(P_i)$ der zulässigen Lösungen gilt:

$$\mathcal{X}(P_0) = \bigcup_{i=1}^k \mathcal{X}(P_i)$$

und

$$\mathcal{X}(P_i) \cap \mathcal{X}(P_j) = \emptyset$$
 für $i \neq j$

• Die Probleme P_1, \ldots, P_k werden falls notwendig weiter unterteilt. Dadurch entsteht ein Baum von Problemen mit P_0 als Wurzel.

Übliche Verzweigungsstrategien

Es sei \mathbf{x} die optimale Lösung der LP-Relaxation von P_0 und die Komponente $x_i = \alpha$ sei nicht ganzzahlig.

- ILP:
 - ▶ P_1 erhält die zusätzliche Nebenbedingung $x_i \leq \lfloor \alpha \rfloor$
 - ▶ P_2 erhält die zusätzliche Nebenbedingung $x_i \ge \lceil \alpha \rceil$
- kombinatorische Probleme: Setze $x_i = 0$ für P_1 bzw. $x_i = 1$ für P_2 .

Welches x_i auswählen? Z.B. das am wenigsten bestimmte.

Obere Schranken

- Für jedes Teilproblem P_i bestimmen wir eine obere Schranke (upper bound) B_{up}^i .
- Hierfür lösen wir eine Relaxation P_i^{relax} von P_i , also ein gegenüber P_i vereinfachtes (relaxiertes) Problem (weniger Nebenbedingungen).
- Es muss gelten

$$\mathcal{X}(P_i) \subseteq \mathcal{X}(P_i^{relax})$$

- Wichtig ist, dass die Relaxationen effizient gelöst werden können.
- Für gewöhnliche ILPs benutzt man üblicherweise LP-Relaxationen.
- Für spezielle kombinatorische Probleme können die Relaxationen vereinfachte und effizient lösbare Probleme sein.

Beispiel: Minimalgerüst ist Relaxation für kürzesten Hamiltonschen Weg

Untere Schranken

- Durch die heuristische Bestimmung einer zulässigen Lösung erhält man eine untere Schranke B_{low} .
- Prinzipiell nicht notwendig. Schlimmstenfalls starten wir mit $B_{low} = -\infty$.
- Ist die optimale Lösung einer Relaxation auch zulässig für das eigentliche Problem P₀, stellt der zugehörige Zielfunktionswert eine untere Schranke dar.
 - **Beispiel:** Bei einem ILP ist die optimale Lösung der LP-Relaxation ganzzahlig.
- B_{low} ist dann im Laufe des Verfahrens gleich dem Zielfunktionswert der besten bekannten zulässigen Lösung von P_0 .

Auslotung eines Problems

Definition 3.7

Ein Problem P_i heißt ausgelotet, wenn einer der folgenden Fälle auftritt:

- (a) $B_{up}^{i} \leq B_{low}$ In $\mathcal{X}(P_{i})$ kann es keine bessere Lösung geben als die beste bisher bekannte.
- (b) $B_{up}^i > B_{low}$ und die optimale Lösung von P_i^{relax} ist zulässig für P_i . Dann hat man eine neue bisher beste zulässige Lösung für P_0 gefunden. Man setzt nun $B_{low} := B_{up}^i$.
- (c) $\mathcal{X}(P_i^{relax}) = \emptyset$ Dann hat P_i^{relax} und damit auch P_i keine zulässige Lösung.

Selektionsstrategie

 Tiefensuche: Durchsuche für ein noch offenes Teilproblem (Knoten im Suchbaum) zuerst den "linken" Teilbaum, dann den "rechten" Teilbaum

Vorteile:

- Man erhält i.d.R. schnell eine zulässige Lösung (und damit eine untere Schranke)
- geringer Speicherplatzverbrauch (kleine Agenda)

Nachteile:

- ▶ i.d.R. größerer Suchbaum
- Maximum Upper Bound: Untersuche als nächstes das noch offene Teilproblem P_i mit der größten oberen Schranke B_{up}^i .

Vorteil:

▶ Suchbaum i.d.R. kleiner als bei der Tiefensuche

Nachteil:

► Größerer Speicherplatzverbrauch für Agenda

