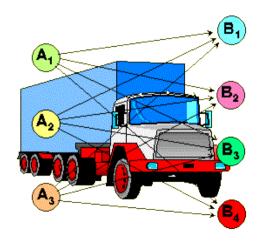
Kapitel 6

Transport- und Zuordnungsprobleme



Inhalt

- Transport- und Zuordnungsprobleme
 - Transportproblem
 - Netzerk-Simplexalgorithmus
 - Zuordnungsproblem

Transportproblem

Definition 6.1

Das Optimierungsproblem min $\sum \sum c_{ij} x_{ij}$ unter den Nebenbedingungen

$$\sum_{j=1}^{n} x_{ij} = a_i \quad \text{für } i = 1, \dots, m$$

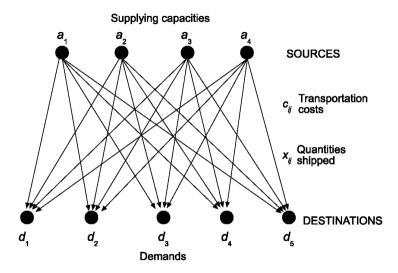
$$\sum_{j=1}^{m} x_{ij} = b_j \quad \text{für } j = 1, \dots, n$$

$$\sum_{i=1}^m \mathsf{x}_{ij} = \mathsf{b}_j$$
 für $j=1,\ldots,n$

und den Vorzeichenbedingungen

$$x_{ij} \geq 0$$
 für $i = 1, \dots, m$ und $j = 1, \dots, n$

heißt Transportproblem.



316 / 409

Bemerkungen zum Transportproblem

Wir setzen ein geschlossenes Transportproblem voraus: $a_i > 0$, $b_j > 0$ und $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$, also Gesamtangebot = Gesamtnachfrage.

Für den Fall $\sum_{i=1}^m a_i > \sum_{j=1}^n b_j$ führen wir ein zusätzliches Warenhaus mit $b_{n+1} = \sum_{j=1}^m a_j - \sum_{j=1}^n b_j$ und $c_{i,n+1} = 0$ ein.

Für den Fall $\sum_{i=1}^m a_i < \sum_{j=1}^n b_j$ führen wir eine zusätzliche Produktionsstätte mit $a_{m+1} = \sum_{j=1}^n b_j - \sum_{i=1}^m a_i$ ein.

Die $c_{m+1,j}$ modellieren dann die Kosten pro ME für das mangelnde Angebot in Warenhaus j.

Anzahl Variablen: m · n

Beispielproblem

Beispiel 6.2

Wir gehen von folgenden Kosten, Angebot und Nachfrage aus:

	B_1	B_2	B_3	
A_1	9	1	3	50
A_2	4	5	8	70
	40	40	40	

Fortsetzung Beispiel.

Damit lautet das zugehörige Transportproblem

$$\min 9x_{11} + x_{12} + 3x_{13} + 4x_{21} + 5x_{22} + 8x_{23}$$

unter den Nebenbedingungen

$$x_{11} + x_{12} + x_{13} = 50$$
 $x_{21} + x_{22} + x_{23} = 70$
 $x_{11} + x_{21} = 40$
 $x_{12} + x_{23} = 40$

und Vorzeichenbedingungen

$$x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \ge 0.$$

Lösbarkeit des Transportproblems

Satz 6.3

Zu jedem Transportproblem existiert eine optimale Lösung.

Beweis.

Es sei

$$G = \sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$

und

$$x_{ij} = \frac{a_i b_j}{G}$$

Dann gilt:

$$\sum_{j=1}^{n} x_{ij} = \sum_{j=1}^{n} \frac{a_{i}b_{j}}{G} = \frac{a_{i}\sum_{j=1}^{n} b_{j}}{G} = a_{i} \quad \text{für } i = 1, \dots, m$$

Fortsetzung Beweis.

und

$$\sum_{i=1}^{m} x_{ij} = \sum_{i=1}^{m} \frac{a_i b_j}{G} = \frac{b_j \sum_{i=1}^{m} a_i}{G} = b_j \quad \text{für } j = 1, \dots, n.$$

Damit existiert eine zulässige Lösung.

Wegen $0 \le x_{ii} \le \min\{a_i, b_i\}$ ist der Zulässigkeitsbereich \mathcal{X} darüberhinaus beschränkt.

Also existiert nach Satz 3.18 eine optimale Lösung.

Transportproblem in Matrixdarstellung

$$\mathbf{A} = \begin{pmatrix} c & (c_{11}, c_{12}, \dots, c_{1n}, c_{21}, \dots, c_{2n}, \dots, c_{m1}, \dots, c_{mn}) \in \mathbb{R}^{m \cdot n} \\ \mathbf{x} & = & (x_{11}, x_{12}, \dots, x_{1n}, x_{21}, \dots, x_{2n}, \dots, x_{m1}, \dots, x_{mn}) \in \mathbb{R}^{m \cdot n} \\ \begin{pmatrix} 1 & 1 & \cdots & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & \cdots & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & \cdots & 1 \\ \hline 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ & & \ddots & & & \ddots & & \ddots & \\ 0 & 0 & 1 & 0 & 0 & 1 & & 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{(m+n) \times m \cdot n}$$

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 322 / 409

genauer

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{falls } 1 \leq i \leq m \wedge (i-1) \cdot n < j \leq i \cdot n \\ 1 & ext{falls } m < i \leq m+n \wedge j = k \cdot n + (i-m) \\ 0 & ext{sonst} \end{array}
ight.$$

Begrenzungsvektor:

$$\mathbf{b}=(a_1,\ldots,a_m,b_1,\ldots,b_n)\in\mathbb{R}^{m+n}$$

Damit hat das Transportproblem in Normalform die Darstellung

$$\min \mathbf{c}^T \mathbf{x}$$

unter den Nebenbedingungen

$$Ax = b, x \ge 0.$$

Rang der Koeffizientenmatrix

Satz 6.4

Die Matrix **A** des Transportproblems hat den Rang $r(\mathbf{A}) = m + n - 1$.

Beweis.

Die Summe der Zeilen 1 bis m ist gleich der Summe der Zeilen m+1 bis m+n. Also sind die m+n Zeilenvektoren linear abhängig und es folgt $r(\mathbf{A}) \leq m+n-1$.

Andererseits sind die m + n - 1 Spaltenvektoren mit den Indizes

$$1, 2, \ldots, n, n+1, 2n+1, \ldots, (m-1)n+1$$

linear unabhängig, also $r(\mathbf{A}) \ge m + n - 1$.

Insgesamt folgt
$$r(\mathbf{A}) = m + n - 1$$
.

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 324 / 409

Eröffnungsverfahren

- Nach Satz 6.4 besteht eine Basislösung eines Transportproblems aus m + n 1 Basisvariablen.
- Zur Konstruktion einer ersten Ecke benötigen wir daher eine zulässige Lösung mit
 - ▶ n + m 1 Variablen $x_{ii} > 0$ und
 - restlichen Variablen $x_{ii} = 0$ (falls keine Entartung vorliegt).
- Wir stellen nun zwei Verfahren zur Konstruktion einer ersten zulässigen Basislösung bzw.
 Ecke vor:
 - Nordwesteckenregel
 - ► Minimale-Kosten-Regel

Transporttableau

		B_1			B_2		• • •		B_n		
A_1	c ₁₁		B_{11}	c ₁₂		B_{12}		c_{1n}		B_{1n}	a_1
1		x_{11}			x_{12}				x_{1n}		-1
A_2	c ₂₁		B_{21}	C ₂₂		B_{22}		C _{2n}		B_{2n}	a_2
, ,2		<i>X</i> 21			X22				x_{2n}		u ₂
:											:
•											
A_m	c _{m1}		B_{m1}	C _{m2}		B_{m2}		C _{mn}		B_{mn}	a _m
, ,,,,,		x_{m1}			x_{m2}				x_{mn}		
		b_1			b_2				b_n		Z

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 326 / 409

Nordwesteckenregel

Idee:

- Man transportiere über die Verbindung ganz links oben im Tableau so viel wie möglich.
- Wird dadurch das Lager erschöpft, streiche man die erste Zeile des Tableaus, ansonsten die erste Spalte, und beginne wieder mit dem ersten Schritt.

Algorithmus zur Nordwesteckenregel

Algorithmus 6.5

end

```
x_{ii} := 0 für i = 1, ..., m, j = 1, ..., n
z := 0
i := 1, i := 1
while i < m and j < n do
        x_{ii} := \min\{a_i, b_i\}
        z := z + c_{ii}x_{ii}
        a_i := a_i - x_{ii}
        b_i := b_i - x_{ii}
        if a_i = 0 then
               i := i + 1
        else
               i := i + 1
        end
```

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 328 / 409

Diskussion Nordwesteckenregel

- Die tatsächlichen Kosten werden zur Auswahl der Basisvariablen nicht berücksichtigt, daher i.d.R. keine gute zulässige Lösung.
- Entartung, wenn in einer Iteration sowohl a_i als auch b_j gleich 0 werden. In der nächsten Iteration wird dann $x_{i+1,j}$ Basisvariable mit $x_{i+1,j} = 0$.
- In jeder Iteration wird genau eine Zeile oder Spalte "gestrichen", in letzter Iteration ist aber nur genau eine Spalte und genau eine Zeile übrig.
- Daher insgesamt m+n-1 Iterationen mit der Auswahl von m+n-1 Basisvariablen.
- Die Bii betrachten wir erst später!

Beispiel zur Nordwesteckenregel

Beispiel 6.6

Wir gehen von Kosten, Angebot und Nachfrage gemäß Beispiel 6.2 aus.

Starttableau:

	B_1			B_2			B_3		
A_1	9	B_{11}	1		B ₁₂	3		B ₁₃	50
A_2	4	B ₂₁	5		B ₂₂	8		B ₂₃	70
	40			40			40		0

- 1. Iteration: $x_{11} = 40, a_1 = 10, b_1 = 0, z = 360$
- 2. Iteration: $x_{12} = 10$, $a_1 = 0$, $b_2 = 30$, z = 370
- 3. Iteration: $x_{22} = 30$, $a_2 = 40$, $b_2 = 0$, z = 520
- 4. Iteration: $x_{23} = 40, a_2 = 0, b_3 = 0, z = 840$

Fortsetzung Beispiel.

Tableau nach Nordwesteckenregel:

	B_1	B_2	B ₃	
A_1	9 40	1 10	3 B_{13}	0
A_2	4 B ₂₁	5 30	8 40	0
	0	0	0	840

Minimale-Kosten-Regel

- Statt die erste Möglichkeit links oben im Transporttableau wählt man unter den möglichen Variablen x_{ii} diejenige mit minimalen Kosten c_{ii} .
- Ansonsten verläuft der Algorithmus analog zur Nordwesteckenregel.
- I.d.R. erhalten wir eine bessere zulässige Basis als bei der Nordwesteckenregel, dies ist aber nicht garantiert.
- Typischer Greedy-Algorithmus: Treffe die lokal beste Entscheidung!

Algorithmus zur Minimale-Kosten-Regel

Algorithmus 6.7

end

```
x_{ii} := 0 für i = 1, ..., m, j = 1, ..., n
I := \{1, \dots, m\}; J := \{1, \dots, n\}; z := 0
while I \neq \emptyset and J \neq \emptyset do
         wähle i und j so, dass c_{ii} = \min\{c_{lk} | l \in I, k \in J\}
         x_{ii} := \min\{a_i, b_i\}
         z := z + c_{ii}x_{ii}
         a_i := a_i - x_{ii}
         b_i := b_i - x_{ii}
         if a_i = 0 then
                  I := I \setminus \{i\}
         else
                  J := J \setminus \{i\}
         end
```

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 333 / 409

Beispiel zur Minimale-Kosten-Regel

Beispiel 6.8

1. Iteration:

$$i = 1, j = 2, x_{12} = 40, a_1 = 10, b_2 = 0, I = \{1, 2\}, J = \{1, 3\}, z = 40$$

2. Iteration:

$$i = 1, j = 3, x_{13} = 10, a_1 = 0, b_3 = 30, I = \{2\}, J = \{1, 3\}, z = 70$$

3. Iteration:

$$i = 2, j = 1, x_{21} = 40, a_2 = 30, b_1 = 0, I = \{2\}, J = \{3\}, z = 230$$

4. Iteration:

$$i = 2, j = 3, x_{23} = 30, a_2 = 0, b_3 = 30, I = \emptyset, J = \emptyset, z = 470$$

Fortsetzung Beispiel.

Tableau nach Minimale-Kosten-Regel:

	B_1			B_2			B_3	
A_1	9	B_{11}	1	40		3	10	0
A_2	4 40		5		B ₂₂	8	30	0
	0			0			0	470

Zugeordneter bipartiter Graph

Für ein Transportproblem sei $A = \{A_1, \dots, A_m\}$ die Menge der Fabriken und $B = \{B_1, \dots, B_n\}$ sei die Menge der Warenhäuser.

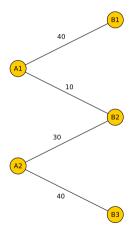
Wir ordnen nun einem Transportproblem einen bipartiten Graph G = (V, E) zu mit:

- V = A + B und
- $E = \{\{v, w\} | v \in A, w \in B\}.$

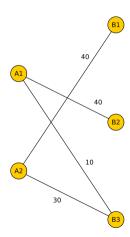
Damit können wir auch jeder Variablen x_{ij} die Kante $\{A_i, B_i\} \in E$ zuordnen.

Struktur zulässiger Basislösungen

Basislösung von Beispiel 6.6:



Basislösung von Beispiel 6.8:



337 / 409

Satz 6.9

Gegeben sei eine zulässige Basislösung für ein Transportproblem.

Dann bilden die Kanten der Basisvariablen im zugeordneten bipartiten Graphen einen Baum.

Beweis.

Angenommen, eine Teilmenge der Basisvariablen bildet im zugeordneten bipartiten Graphen einen Kreis der Länge 2k. O.B.d.A. sei dies der Kreis $(A_1, B_1, A_2, B_2, A_3, \ldots, A_k, B_k, A_1)$ mit den Basisvariablen $x_{11}, x_{21}, x_{22}, x_{32}, \ldots, x_{kk}, x_{1k}$.

Wir bilden nun eine Linearkombination der Spaltenvektoren dieser Basisvariablen von der Matrix **A** wie folgt:

- Für eine Kante (A_i, B_i) erhält der Spaltenvektor $\mathbf{a}^{(i,i)}$ den Koeffizienten 1,
- für eine Kante (B_i, A_{i+1}) und die Kante (B_k, A_1) erhält der Spaltenvektor $\mathbf{a}^{(i+1,i)}$ bzw. $\mathbf{a}^{(1,k)}$ den Koeffizienten -1.

Fortsetzung Beweis.

Dann bildet diese Linearkombination den Vektor **0**, die Spaltenvektoren sind also linear abhängig. Widerspruch zu Basislösung!

Also müssen die Kanten der Basisvariablen einen kreisfreien Untergraphen bilden.

Da der bipartite Graph aber

- m + n Knoten und
- eine Basislösung n + m 1 Variablen (also Kanten)

hat, müssen die Variablen der Kanten einen Baum bilden (vgl. Graphentheorie, Satz 1.42 (5)).

Netzwerk-Simplexalgorithmus

Fragestellungen/Aufgaben:

- Bewertung der Nicht-Basisvariablen (NBV) x_{ij} mit Schattenpreisen B_{ij}
- Auswahl einer Nicht-Basisvariablen
- Auswahl einer Basisvariablen (BV), die zur Nicht-Basisvariablen wird
- Anpassung des Tableaus

Satz 6.9 bildet die Basis, um diese Fragestellungen zu lösen.

Bestimmung der Schattenpreise

Es sei x_{ij} eine NBV.

- Schattenpreis: Wie würden sich die Kosten ändern, wenn wir 1 ME von A_i nach B_j schicken würden?
- In der Basislösung gibt es gemäß Satz 6.9 genau einen Weg W von A_i nach B_i .
- Nehmen wir die Kante für x_{ii} hinzu, entsteht genau ein Kreis.
- Transportieren wir 1 ME von A_i nach B_j über die Kante von x_{ij} , müssen wir auf dem Weg W von A_i nach B_j die Transportmengen wie folgt anpassen:
 - von A_k zu B_l: 1 ME weniger
 - ▶ von B_l zu A_k : 1 ME mehr

• Damit können wir die Schattenpreise bestimmen:

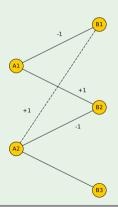
$$B_{ij} = c_{ij} + \sum_{(B_I, A_k) \in W} c_{kl} - \sum_{(A_k, B_I) \in W} c_{kl}$$

- Für $B_{ii} < 0$ lohnt es sich, die Variable x_{ij} in die Basis aufzunehmen.
- Analog zum Simplexalgorithmus können wir die NBV mit kleinstem B_{ij} als neue BV wählen.
- Gilt $B_{ii} \ge 0$ für alle NBV, dann ist die Lösung optimal.

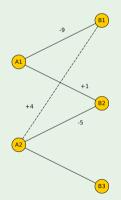
Beispiel zur Berechnung der Schattenpreise

Beispiel 6.10

Mengenänderung für x_{21} in Basislösung von Beispiel 6.6:



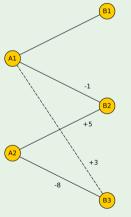
Schattenpreis B_{21} für Variable x_{21} :



$$B_{21} = 4 + 1 - 9 - 5 = -9$$

Fortsetzung Beispiel.

Schattenpreis B_{13} für Variable x_{13} :



$$B_{13} = 3 + 5 - 1 - 8 = -1$$

- Auswahl von x₂₁ als neue BV
- entspricht Pivotspalte in primalem Simplex
- bleibt:
 - Pivotzeile?
 - Anpassung?

Anpassung der Basislösung

- Auf einer Kante von A_k nach B_l können wir die Transportmenge um nicht mehr als x_{kl} reduzieren.
- Damit fehlt in Warenhaus B_l eine Kapazität von x_{kl} , die nun von Fabrik k' über die Kante von $x_{k'l}$ geliefert werden muss. usw.
- Für die ausgewählte NBV x_{ij} setzen wir:

$$x_{ij} = \Delta = \min\{x_{kl} | (A_k, B_l) \in W\}$$

- Eine BV $x_{i'j'}$, für die das Minimum angenommen wird, wird zur NBV.
- Für alle Kanten $(A_k, B_l) \in W$:

$$x_{kl} = x_{kl} - \Delta$$

• Für alle Kanten $(B_l, A_k) \in W$:

$$x_{kl} = x_{kl} + \Delta$$

Zielfunktionswert:

$$z = z + \Delta \cdot B_{ii}$$

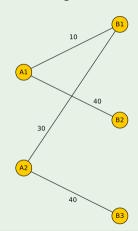
Beispiel 6.11

Für die Basislösung von Beispiel 6.6 und die neue BV x_{21} ergibt sich:

$$x_{21} = \Delta = \min\{x_{22}, x_{11}\}\$$
 $= \min\{40, 30\} = 30$
 $x_{22} = 30 - 30 = 0$
 $x_{12} = 10 + 30 = 40$
 $x_{11} = 40 - 30 = 10$
 $x_{12} = 840 - 30 \cdot 9 = 570$

 x_{22} wird also NBV.

Die neue Basislösung:



Stepping-Stone-Methode

Algorithmus 6.12

- Bestimme mit einem Eröffnungsverfahren (z.B. der Nordwesteckenregel) eine zulässige Basislösung x und den zugehörigen Zielfunktionswert z.
- ② Suche für alle NBV x_{ij} im zugeordneten bipartiten Graphen den Weg W_{ij} von A_i nach B_j und bestimme damit die Schattenpreise

$$B_{ij} := c_{ij} + \sum_{(B_l, A_k) \in W_{ij}} c_{kl} - \sum_{(A_k, B_l) \in W_{ij}} c_{kl}.$$

3 Gilt $B_{ij} \ge 0$ für alle NBV x_{ij} , dann ist die aktuelle Basislösung optimal. STOP! Ansonsten bestimme i, j so, dass $B_{ii} = \min\{B_{kl}|x_{kl} \text{ ist NBV}\}.$

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 347 / 409

Fortsetzung Algorithmus.

- $W := \text{Weg von } A_i \text{ nach } B_j \text{ in aktueller Basislösung}$ $x_{ij} := \Delta := \min\{x_{kl} | (A_k, B_l) \in W\}$ $x_{i',j'} \text{ ist eine BV, für die das Minimum } \Delta \text{ angenommen wird.}$
- for all $(A_k, B_l) \in W$ do $x_{kl} := x_{kl} \Delta$ end for all $(B_l, A_k) \in W$ do $x_{kl} := x_{kl} + \Delta$ end $z := z + \Delta \cdot B_{li}$
- x_{ij} wird BV.
 x_{i',j'} wird NBV.
 Gehe zu Schritt 2.

Beispiel zur Stepping-Stone-Methode

- Nach dem Eröffnungsverfahren setzen wir im Tableau wieder die Originalwerte für a_i und b_j ein.
- Dies dient nur der besseren Übersicht, denn die Werte werden im weiteren Verlauf nicht mehr benötigt.

Beispiel 6.13

Gegeben seien Kosten, Angebot und Nachfrage wie in Beispiel 6.2. Die Nordwesteckenregel und Beispiel 6.10 liefern:

	$\ $ B_1	B_2	B_3	
A_1	9 40	1 10	3 -1	50
A_2	4 -9	5 30	8 40	70
	40	40	40	840

Also i = 2, j = 1 mit $B_{21} = -9$.

$$W \text{ ist } (A_2, B_2, A_1, B_1).$$

$$x_{21} = \Delta = \min\{x_{22}, x_{11}\} = 30$$

$$i' = 2, j' = 2$$

$$x_{22} = 0, x_{11} = 10, x_{12} = 40$$

$$z = 840 - 30 \cdot 9 = 570$$

NBV sind jetzt: $\{x_{13}, x_{22}\}$

Weg von A_1 nach B_3 : (A_1, B_1, A_2, B_2)

$$B_{13} = 3 + 4 - 9 - 8 = -10$$

Weg von A_2 nach B_2 : (A_2, B_1, A_1, B_2)

$$B_{22} = 5 + 9 - 4 - 1 = 9$$

	B_1	B_2		B ₃		
A_1	9 10	1 40		3	-10	50
A_2	4 30	5	9	8 40		70
	40	40		40		570

Also
$$i = 1, j = 3$$
 mit $B_{13} = -10$.

$$W$$
 ist (A_1, B_1, A_2, B_3) .

$$x_{13} = \Delta = \min\{x_{11}, x_{23}\} = 10$$

$$i' = 1, i' = 1$$

$$x_{11} = 0, x_{23} = 30, x_{21} = 40$$

$$z = 570 - 10 \cdot 10 = 470$$

NBV sind jetzt: $\{x_{11}, x_{22}\}$

Weg von A_1 nach B_1 : (A_1, B_3, A_2, B_1)

$$B_{11} = 9 + 8 - 3 - 4 = 10$$

Weg von A_2 nach B_2 : (A_2, B_3, A_1, B_2)

$$B_{22} = 5 + 3 - 8 - 1 = -1$$

		B_1			B_2			B_3	
A_1	9		9	1	40		3	10	50
A ₂	4	40		5		-1	8	30	70
		40			40			40	470

Also
$$i = 2, j = 2$$
 mit $B_{22} = -1$.

$$W \text{ ist } (A_2, B_3, A_1, B_2).$$

$$x_{22} = \Delta = \min\{x_{23}, x_{12}\} = 30$$

$$i' = 2, j' = 3$$

$$x_{23} = 0, x_{12} = 10, x_{13} = 40, z =$$

$$470 - 30 \cdot 1 = 440$$

NBV sind jetzt: $\{x_{11}, x_{23}\}$

Weg von A_1 nach B_1 : (A_1, B_2, A_2, B_1)

$$B_{11} = 9 + 5 - 1 - 4 = 9$$

Weg von A_2 nach B_3 : (A_2, B_2, A_1, B_3)

$$B_{23} = 8 + 1 - 5 - 3 = 1$$

Dies ist die optimale Lösung!

		B_1			B_2		B_3		
A_1	9		9	1	10	3	40		50
A_2	4	40		5	30	8		1	70
		40			40		40		440

Vergleich zum Simplexalgorithmus

Beispiel 6.14

Wir stellen für die Basislösung von Beispiel 6.6 das Simplextableau auf. Hierzu drücken wir die BVs $x_{11}, x_{12}, x_{22}, x_{23}$ durch die NBVs x_{13}, x_{21} aus.

$$x_{11} + x_{21} = 40$$

$$\Rightarrow x_{11} = 40 - x_{21}$$

$$x_{11} + x_{12} + x_{13} = 50$$

$$\Rightarrow x_{12} = 50 - x_{11} - x_{13}$$

$$\Rightarrow x_{12} = 50 - (40 - x_{21}) - x_{13}$$

$$\Rightarrow x_{12} = 10 + x_{21} - x_{13}$$

$$x_{13} + x_{23} = 40$$

$$\Rightarrow x_{23} = 40 - x_{13}$$

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 353 / 409

$$x_{21} + x_{22} + x_{23} = 70$$

$$\Rightarrow x_{22} = 70 - x_{23} - x_{21}$$

$$\Rightarrow x_{22} = 70 - (40 - x_{13}) - x_{21}$$

$$\Rightarrow x_{22} = 30 + x_{13} - x_{21}$$

Wir setzen die Gleichungen in die Zielfunktion ein:

$$9x_{11} + x_{12} + 3x_{13} + 4x_{21} + 5x_{22} + 8_{23}$$

$$= 9(40 - x_{21}) + (10 + x_{21} - x_{13}) + 3x_{13} + 4x_{21}$$

$$+5(30 + x_{13} - x_{21}) + 8(40 - x_{13})$$

$$= 360 - 9x_{21} + 10 + x_{21} - x_{13} + 3x_{13} + 4x_{21}$$

$$+150 + 5x_{13} - 5x_{21} + 320 - 8x_{13}$$

$$= 840 - x_{13} - 9x_{21}$$

Also lautet die Zielfunktion $z=\min 840-x_{13}-9x_{21}$ bzw. $-z=\max -840+x_{13}+9x_{21}$

Damit können wir das Starttableau aufstellen:

					X22		
<i>x</i> ₁₁	1	0	0	1	0	0	40
<i>x</i> ₁₂	0	1	1	-1	0	0	10
X22	0	0	-1	1	1	0	30
X23	0	0	1	0	0 0 1 0	1	40
-z	0	0	-1	-9	0	0	-840

Man beachte: Die Schattenpreise in der Zielfunktionszeile sind identisch mit den Schattenpreisen aus den Beispielen 6.10 und 6.13.

Im weiteren Verlauf: Basislösungen, Zielfunktionswerte und Schattenpreise ebenfalls identisch zu Beispiel 6.13.

Duales Problem

Lemma 6.15

Das zum Transportproblem duale Problem lautet:

$$\max \sum_{i=1}^m a_i u_i + \sum_{j=1}^n b_j v_j$$

unter den Nebenbedingungen

$$u_i + v_j \le c_{ij}, \quad i = 1, ..., m, \text{ und } j = 1, ..., n$$

und

$$u_i, v_j \in \mathbb{R}$$
 für $i = 1, \ldots, m$, und $j = 1, \ldots, n$

Anwendung der Dualitätssätze

Es sei $F(\mathbf{x})$ die Zielfunktion des primalen und $D(\mathbf{u}, \mathbf{v})$ des dualen Transportproblems.

• Sind $\mathbf{x} \in \mathbb{R}^{m \cdot n}$ und $\mathbf{u} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^n$ optimal, dann gilt

$$F(\mathbf{x}) = D(\mathbf{u}, \mathbf{v})$$

siehe Satz 5.23

• $\mathbf{x} = (x_{ii})$ sowie $\mathbf{u} = (u_i)$ und $\mathbf{v} = (v_i)$ sind genau dann optimal, wenn gilt

$$x_{ij} > 0 \Rightarrow u_i + v_j = c_{ij}$$

siehe Satz 5.24

Effizienterer Solver durch Ausnutzung der Dualität

Gegeben sei eine zulässige Basislösung x:

• Finde Belegung der Variablen u_i und v_j , so dass gilt:

$$x_{ij}$$
 ist BV $\Rightarrow u_i + v_j = c_{ij}$

- Wenn außerdem $u_i + v_j \le c_{ij}$ für alle NBV gilt, dann ist die Basislösung optimal.
- Ansonsten wähle NBV xii mit dem kleinsten (negativen) Wert für

$$B_{ij} = c_{ij} - u_i - v_j$$

und tausche sie gegen eine BV aus.

Diese Gleichung folgt aus Satz 5.25.

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 358 / 409

Wie werden die u_i und v_j bestimmt?

Ausgehend von einer Basislösung x stellt man das LGS

$$u_i + v_j = c_{ij}$$
 für alle i, j mit x_{ij} ist BV

auf.

- Anzahl der Variablen: n + mAnzahl der Gleichungen: n + m - 1
- Setze eine Variable auf 0, z.B. $u_1 = 0$. Löse die restlichen Gleichungen sukzessive.
- Die Basislösung bildet einen Baum. Das LGS kann also entlang der Kanten des Baumes gelöst werden.

Beispiel 6.16

Wir bestimmen u_i und v_j für die Basis von Beispiel 6.6. Das LGS lautet:

$$u_1 + v_1 = 9$$

 $u_1 + v_2 = 1$
 $u_2 + v_2 = 5$
 $u_2 + v_3 = 8$

Wir setzen $u_1 = 0$. Damit folgt:

$$v_1 = 9, v_2 = 1, u_2 = 4, v_3 = 4$$

und wir erhalten:

$$B_{13} = 3 - 0 - 4 = -1$$

 $B_{21} = 4 - 4 - 9 = -9$

Dies sind genau die Schattenpreise aus den Beispielen 6.10, 6.13 und 6.14.

Die u-v-Methode

Algorithmus 6.17

- Bestimme mit einem Eröffnungsverfahren (z.B. der Nordwesteckenregel) eine zulässige Basislösung x und den zugehörigen Zielfunktionswert z.
- 2 Setze $u_1 = 0$ und löse damit das LGS

$$u_i + v_j = c_{ij}$$
 für alle i, j mit x_{ij} ist BV

- **3** Berechne für alle NBV x_{ij} : $B_{ij} := c_{ij} u_i v_j$
- Gilt $B_{ij} \ge 0$ für alle NBV x_{ij} , dann ist die aktuelle Basislösung optimal. STOP! Ansonsten bestimme i, j so, dass $B_{ij} = \min\{B_{kl}|x_{kl} \text{ ist NBV}\}$.

Fortsetzung Algorithmus.

- W := Weg von A_i nach B_j in aktueller Basislösung $x_{ij} := \Delta := \min\{x_{kl} | (A_k, B_l) \in W\}$ $x_{i',j'}$ ist die BV, für die das Minimum Δ angenommen wird.
- for all $(A_k, B_l) \in W$ do $x_{kl} := x_{kl} \Delta$ end for all $(B_l, A_k) \in W$ do $x_{kl} := x_{kl} + \Delta$ end $z := z + \Delta \cdot B_{li}$
- x_{ij} wird BV.
 x_{i',j'} wird NBV.
 Gehe zu Schritt 2.

Beispiel für die u-v-Methode

Beispiel 6.18

Wir setzen einfach Beispiel 6.16 fort.

$$i = 2, j = 1$$

 $W = (A_2, B_2, A_1, B_1), x_{22}$

$$W = (A_2, B_2, A_1, B_1), x_{21} = \Delta = \min\{x_{22}, x_{11}\} = 30$$

 $x_{22} = 0, x_{11} = 10, x_{12} = 40, z = 840 - 30 \cdot 9 = 570$

$$x_{22} = 0, x_{11} = 10, x_{12} = 40, z = 640 - 30 \cdot 9 = 570$$

BVs: $x_{11}, x_{12}, x_{21}, x_{23}$

LGS:

$$u_1 + v_1 = 9$$

$$u_1 + v_2 = 1$$

$$u_2 + v_1 = 4$$

$$u_2 + v_3 = 8$$

Lösung: $u_1 = 0$, $v_1 = 9$, $v_2 = 1$, $u_2 = -5$, $v_3 = 13$ Schattenpreise:

$$B_{13} = 3 - 0 - 13 = -10$$

$$B_{22}=5-(-5)-1=9$$

$$i = 1, j = 3$$

$$W = (A_1, B_1, A_2, B_3)$$

$$x_{13} = \Delta = \min\{x_{11}, x_{23}\} = 10$$

$$x_{11} = 0, x_{23} = 30, x_{21} = 40$$

$$z = 570 - 10 \cdot 10 = 470$$

BVs:
$$x_{12}, x_{13}, x_{21}, x_{23}$$

LGS:

$$u_1 + v_2 = 1$$

$$u_1+v_3 = 3$$

$$u_2 + v_1 = 4$$

$$u_2 + v_3 = 8$$

Lösung:
$$u_1 = 0$$
, $v_2 = 1$, $v_3 = 3$, $u_2 = 5$, $v_1 = -1$

Schattenpreise:

$$B_{11} = 9 - 0 - (-1) = 10$$

$$B_{22} = 5 - 5 - 1 = -1$$

$$i = 2, j = 2$$

 $W = (A_2, B_3, A_1, B_2)$

$$x_{22} = \Delta = \min\{x_{23}, x_{12}\} = 30$$

$$x_{23} = 0, x_{12} = 10, x_{13} = 40, z = 470 - 30 \cdot 1 = 440$$

BVs: $x_{12}, x_{13}, x_{21}, x_{22}$

LGS:

$$u_1 + v_2 = 1$$

 $u_1 + v_3 = 3$
 $u_2 + v_1 = 4$
 $u_2 + v_2 = 5$

Lösung:
$$u_1 = 0, v_2 = 1, v_3 = 3, u_2 = 4, v_1 = 0$$

Schattenpreise:

$$B_{11}=9-0-0=9$$

$$B_{23} = 8 - 4 - 3 = 1$$

Damit ist die aktuelle Basislösung optimal!

Zuordnungsproblem

Definition 6.19

Das Optimierungsproblem min $\sum_{i=1}^{n}\sum_{j=1}^{n}c_{ij}x_{ij}$ unter den Nebenbedingungen

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \text{für } i = 1, \dots, n$$

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \text{für } j = 1, \dots, n$$

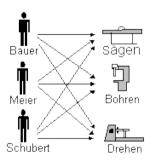
und den Vorzeichenbedingungen

$$x_{ij} \in \{0,1\}$$
 für $i = 1, ..., n$ und $j = 1, ..., n$

heißt Zuordnungsproblem.

Bemerkungen:

- ullet Man beachte: Keine Stetigkeit für die Entscheidungsvariablen x_{ij}
- Ein Optimierungsproblem, bei dem die Entscheidungsvariablen nur die Werte 0 oder 1 annehmen dürfen, heißt kombinatorisches Optimierungsproblem.



Zuordnungsproblem als Transportproblem

- Das Zuordnungsproblem kann als Spezialfall des Transportproblems betrachtet und z. B. mit der Stepping-Stone-Methode optimal gelöst werden.
- Setze hierzu im Transportproblem m=n, sowie $a_1=a_2=\cdots=a_n=1$ und $b_1=b_2=\cdots=b_n=1$. Damit sind die Nebenbedingungen des Zuordnungsproblems modelliert.
- Die Zielfunktion ist dann für beide Probleme identisch.
- Wegen $x_{ij} \leq \max\{a_i, b_j\}$ folgt aus dem Begrenzungsvektor $x_{ij} \leq 1$. Damit ist $0 \leq x_{ij} \leq 1$ keine zusätzliche Einschränkung gegenüber dem Transportproblem.
- Wir werden im Folgenden zeigen: Falls a_i und b_j ganzzahlig sind, liefert der Simplexalgorithmus für das Transportproblem nur ganzzahlige Lösungen.
- Damit gilt für eine so ermittelte optimale Lösung stets $x_{ij} \in \{0, 1\}$, sie ist also zulässig für das Zuordnungsproblem.
- Größe einer zulässigen Basislösung: 2n-1

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 368 / 409

Ecken des Zuordnungsproblems

Definition 6.20

Ein Zuordnungsproblem mit den Vorzeichenbedingungen

$$0 \le x_{ij} \le 1$$
 für $i, j = 1, \ldots, n$

statt $x_{ii} \in \{0,1\}$ heißt relaxiertes Zuordnungproblem.

Beispiel 6.21

Wir betrachten ein relaxiertes Zuordnungproblem mit Kostenmatrix

$$\mathbf{C} = (c_{ij}) = \left(egin{array}{ccc} 0 & 0 & 1 \ 0 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight)$$

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 369 / 409

Dann sind

$$\mathbf{x} = (x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, x_{31}, x_{32}, x_{33})$$

$$= (1, 0, 0, 0, 1, 0, 0, 0, 1)$$

$$\mathbf{y} = (0, 1, 0, 1, 0, 0, 0, 0, 1) und$$

$$\mathbf{z} = (\frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 1)$$

optimale Lösungen.

Wegen

$$\mathbf{z} = \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{y}$$

ist aber **z** keine Ecke und würde damit vom Simplexalgorithmus niemals als optimale Lösung ermittelt.

Ganzzahligkeit der Ecken beim Zuordnungsproblem Satz 6.22

Für jedes relaxierte Zuordnungsproblem sind alle Ecken ganzzahlig.

Für ein relaxiertes Zuordnungsproblem der Größe $n \times n$ gilt also

$$\mathbf{x}$$
 ist Ecke $\Rightarrow \mathbf{x} \in \{0,1\}^{n \times n}$

Beweis.

Induktion über n.

n = 1: $x_{11} = 1$ ist die einzige zulässige und damit optimale Lösung.

 $n-1 \rightarrow n$: Es sei **x** Ecke eines relaxierten $n \times n$ -Zuordnungsproblems.

Fall 1: Es existieren $1 \le i, j \le n$ mit $x_{ij} = 1$.

Dann streiche aus dem Zuordnungsproblem Zeile i und Spalte j und aus \mathbf{x} alle entsprechenden Komponenten. Der Restvektor von \mathbf{x} muss dann eine Ecke des $(n-1) \times (n-1)$ Zuordnungsproblems sein, das nach I.V. nur ganzzahlige Ecken hat.

Fortsetzung Beweis.

Fall 2: Es existiert kein i, j mit $x_{ii} = 1$.

Damit folgt $0 \le x_{ij} < 1$ für alle i, j.

Wegen $\sum_{i=1}^{n} x_{ij} = 1$ für alle *i* folgt: Für jedes *i* gibt es mindestens zwei Variablen $x_{ij} > 0$.

Damit existieren mindestens 2n Variablen $x_{ii} > 0$.

Widerspruch, denn eine Ecke x und damit eine zulässige Basislösung hat nur 2n-1 BVs.

Folgerung 6.23

Wir können Zuordnungsprobleme mit dem Simplexalgorithmus optimal lösen.

Konsequenz

Wir können Zuordnungsprobleme lösen, indem wir

- zum relaxierten Problem übergehen und
- das relaxierte Problem mit dem Simplexalgorithmus lösen.

In der Vorlesung "Kombinatorische Optimierung" untersuchen wir,

- für welche weiteren kombinatorischen Probleme solch ein Vorgehen möglich ist, bzw.
- welche Bedingungen hinreichend für ganzzahlige Ecken sind.

Zusammenfassung

- Transportproblem und Zuordnungsproblem lösen: Stepping-Stone-Methode
- Effizienterer Algorithmus unter Ausnutzung der Dualität: u-v-Methode
- Diese kombinatorischen Methoden sind analog zum Simplexalgorithmus.
- Startecke: Nordwesteckenregel oder Minimale-Kosten-Regel
- ganzzahlige Ecken beim Zuordnungsproblem