Lineare Optimierung

Lösungen zu Aufgabenblatt 6

Aufgabe 1 (Primaler Simplexalgorithmus)

(a) Maximiere

$$3x_1 + 7x_2 - 2x_3$$

unter den Neben- und Vorzeichenbedingungen

(b) Maximiere

$$2x_1 + x_2 + x_3 + 2x_4 + 2x_5$$

unter den Neben- und Vorzeichenbedingungen

Lösung: siehe Homepage

Aufgabe 2 (Degenerierte Ecke)

4 Punkte

Gegeben sei ein LP mit den folgenden Neben- und Vorzeichenbedingungen:

$$\begin{array}{rcrr}
4x_1 & + & x_2 & \leq & 20 \\
 & & 4x_2 & \leq & 10 \\
2x_1 & + & 3x_2 & \leq & 12 \\
10x_1 & + & 5x_2 & \leq & 52 \\
 & & x_1, x_2 & \geq & 0
\end{array}$$

Zeigen Sie, dass dieses LP eine entartete Ecke hat. Ermitteln Sie diese Ecke und geben Sie zwei unterschiedliche Basen an, die zu der gleichen Ecke führen.

Lösung: Das LP in Normalform lautet:

Wir wählen zunächst x_3 und x_5 als NBV, damit sind x_1, x_2, x_4, x_6 Basisvariablen. Es entsteht das LGS

$$\begin{pmatrix} 4 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 2 & 3 & 0 & 0 \\ 10 & 5 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_4 \\ x_6 \end{pmatrix} = \begin{pmatrix} 20 \\ 10 \\ 12 \\ 52 \end{pmatrix}$$

mit Lösung $x_1 = \frac{24}{5}, x_2 = \frac{4}{5}, x_4 = \frac{34}{5}, x_6 = 0.$

Wählen wir dagegen x_3 und x_6 als NBV, damit sind x_1, x_2, x_4, x_5 BV, ensteht das LGS

$$\begin{pmatrix} 4 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 2 & 3 & 0 & 1 \\ 10 & 5 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 20 \\ 10 \\ 12 \\ 52 \end{pmatrix}$$

mit Lösung $x_1 = \frac{24}{5}, x_2 = \frac{4}{5}, x_4 = \frac{34}{5}, x_5 = 0.$

Damit beschreiben beide zulässige Basislösungen die Ecke

$$\mathbf{x} = \begin{pmatrix} \frac{24}{5} \\ \frac{4}{5} \\ 0 \\ \frac{34}{5} \\ 0 \\ 0 \end{pmatrix}.$$

Aufgabe 3 (Unbeschränktes LP)

Gegeben sei das LP:

$$\max x_1 + x_2$$

unter den Neben- und Vorzeichenbedingungen

$$\begin{array}{rcrrr}
-5x_1 & + & x_2 & \leq & 7 \\
-2x_1 & + & x_2 & \leq & 10 \\
\frac{1}{4}x_1 & - & x_2 & \leq & 1 \\
& & x_1, x_2 & \geq & 0
\end{array}$$

Zeigen Sie, dass die Zielfunktion auf der Menge der zulässigen Lösungen nicht beschränkt ist. Geben Sie hierzu einen Strahl an, der im zulässigen Bereich liegt und auf dem die Zielfunktion beliebig groß wird.

Lösung: Das Starttableau lautet:

Wir wählen x_2 als Pivotspalte, dann ist x_3 die Pivotzeile. Damit lautet das nächste Tableau:

 x_1 ist die Pivotspalte und x_4 die Pivotzeile. Damit lautet das nächste Tableau:

	x_1	x_2	x_3	x_4	x_5	
x_2	0	1	$-\frac{2}{3}$	$\frac{5}{3}$	0	12
x_1	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	0	1
x_5	0	0	$-\frac{7}{12}$	$\frac{19}{12}$	1	$\frac{51}{4}$
\overline{z}	0	0	-1	2	0	13

Pivotspalte wäre x_3 , aber alle Einträge in der Spalte sind negativ. Damit ist das LP unbeschränkt.

Wir konstruieren einen entsprechenden Strahl: Sei $x_3 = t$. Wir setzen $x_4 = 0$ (NBV). Aus der x_2 Zeile ergibt sich ($x_3 = t$ eingesetzt):

$$x_2 - \frac{2}{3}t = 12 \quad \Rightarrow \quad x_2 = 12 + \frac{2}{3}t$$

Für die x_1 Zeile ergibt sich:

$$x_1 - \frac{1}{3}t = 1 \quad \Rightarrow \quad x_1 = 1 + \frac{1}{3}t$$

und für die x_5 Zeile:

$$-\frac{7}{12}t + x_5 = \frac{51}{4}$$
 \Rightarrow $x_5 = \frac{51}{4} + \frac{7}{12}t$

Damit lautet der Strahl:

$$\begin{pmatrix} 1 \\ 12 \\ 0 \\ 0 \\ \frac{51}{4} \end{pmatrix} + t \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 1 \\ 0 \\ \frac{7}{12} \end{pmatrix}, t \ge 0$$

Der Strahl liegt komplett im zulässigen Bereich, denn die Vorzeichenbedingungen sind erfüllt und gemäß Konstruktion sind auch die Gleichungen des LP (in Normalform) erfüllt. Die Zielfunktion auf dem Strahl lautet:

$$1 + \frac{1}{3}t + 12 + \frac{2}{3}t = 13 + t$$

Für $t \ge 0$ ist die Zielfunktion somit nicht beschränkt.