Lineare Optimierung Lösungen zu Aufgabenblatt 11

Aufgabe 1 (Transportproblem)

Gegeben sei das folgende Transportproblem:

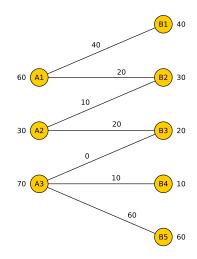
	B_1	B_2	B_3	B_4	B_5	
$\overline{A_1}$	7	2	5	6	8	60 30 70
A_2	2	9	9	1	$\frac{4}{2}$	30
A_3	7 2 6	5	4	3	2	70
	40	30	20	10	60	

- (a) Berechnen Sie eine erste zulässige Basislösung mit Hilfe der Nordwesteckenregel.
- (b) Berechnen Sie eine erste zulässige Basislösung mit Hilfe der Minimale-Kosten-Regel.
- (c) Bestimmen Sie für alle Nichtbasisvariablen der Basislösung von (a) deren Schattenpreise.
- (d) Führen Sie für die Nichtbasisvariable mit kleinstem Schattenpreis in (c) einen Basisaustausch durch. Geben Sie die neue zulässige Basislösung und deren Zielfunktionswert an.
- (e) Bestimmen Sie eine optimale Lösung mit dem GLPK oder Gurobi.

Lösung:

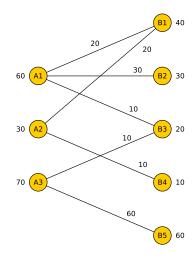
(a) Verlauf des Algorithmus:

Struktur der zulässigen Basislösung:

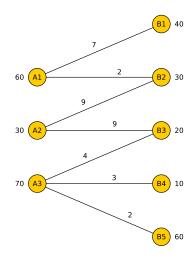


(b) Verlauf des Algorithmus:

Struktur der zulässigen Basislösung:



(c) Hier die Struktur der zulässigen Basislösung mit den Kosten pro Mengeneinheit:



Daraus ergeben sich die folgenden Schattenpreise:

$$B_{13} = 5 - 9 + 9 - 2 = 3$$

$$B_{14} = 6 - 3 + 4 - 9 + 9 - 2 = 5$$

$$B_{15} = 8 - 2 + 4 - 9 + 9 - 2 = 8$$

$$B_{21} = 2 - 7 + 2 - 9 = -12$$

$$B_{24} = 1 - 3 + 4 - 9 = -7$$

$$B_{25} = 4 - 2 + 4 - 9 = -3$$

$$B_{31} = 6 - 7 + 2 - 9 + 9 - 4 = -3$$

$$B_{32} = 5 - 9 + 9 - 4 = 1$$

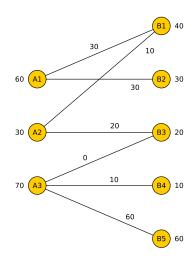
(d) Die Variable B_{21} hat mit -12 den kleinsten Schattenpreis.

Weg von A_2 nach B_1 ist (A_2, B_2, A_1, B_1) .

Somit: $x_{21} = \Delta = \min\{x_{22}, x_{11}\} = 10$. Dieses Minimum wird für x_{22} angenommen. Somit wird x_{22} zur neuen Nichtbasisvariable.

Neuer Zielfunktionswert: $740 + 10 \cdot (-12) = 620$.

Struktur der neuen zulässigen Basislösung:



(e) siehe Homepage

Aufgabe 2 (Stepping-Stone-Methode)

(a) Lösen Sie das folgende Transportproblem mittels der Stepping-Stone-Methode (Netzwerksimplexalgorithmus):

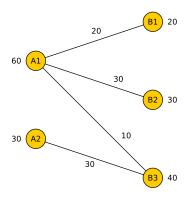
(b) Überprüfen Sie Ihre Lösung aus (a), indem Sie das Problem mit dem GLPK oder Gurobi lösen.

Lösung:

(a) Die Nordwesteckenregel liefert die zulässige Basislösung:

$$x_{11} = 20$$
 $x_{12} = 30$
 $x_{13} = 10$
 $x_{23} = 30$

mit Zielfunktionswert z = 430. Struktur:



Schattenpreise:

$$B_{21} = 2 - 7 + 5 - 6 = -6$$

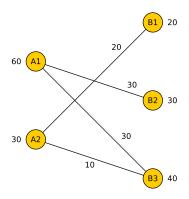
$$B_{22} = 9 - 2 + 5 - 6 = 6$$

Damit wird x_{21} zur neuen Basisvariable.

Es gilt $x_{21} = \Delta = \min\{x_{11}, x_{23}\} = 20$ und x_{11} wird zur neuen Nichtbasisvariable.

Neuer Zielfunktionswert: $z = 430 + 20 \cdot (-6) = 310$.

Struktur der neuen zulässigen Basislösung:



Schattenpreise:

$$B_{11} = 7 - 2 + 6 - 5 = 6$$

$$B_{22} = 9 - 2 + 5 - 6 = 6$$

Damit ist diese zulässige Basislösung optimal.

(b) siehe Homepage

Aufgabe 3 (Approximationsgüte)

Für eine Instanz I des Transportproblems mit einer Kostenmatrix $\in \mathbb{R}^{m \times n}$ sei $W_{opt}(I)$ der optimale Zielfunktionswert und $W_{mkr}(I)$ der Zielfunktionswert, der durch die Minimale-Kosten-Regel entsteht.

Zeigen Sie, dass die Approximationsgüte

$$r(I) = \frac{W_{mkr}(I)}{W_{opt}(I)}$$

der Minimale-Kosten-Regel beliebig groß (und damit beliebig schlecht) sein kann.

Lösung: Wir betrachten die folgende Instanz eines Transportproblems:

$$\begin{array}{c|cccc} & B_1 & B_2 & \\ \hline A_1 & 1 & 2 & 1 \\ A_2 & 2 & r & 1 \\ \hline & 1 & 1 & \end{array}$$

Für diese Instanz und $r \geq 3$ ergibt sich $W_{opt}(I) = 4$ und $W_{mkr}(I) = 1 + r$. Daraus folgt:

$$\lim_{r\to\infty}\frac{W_{mkr}(I)}{W_{opt}(I)}=\lim_{r\to\infty}\frac{1+r}{4}=\infty.$$