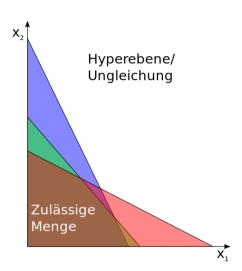
Kapitel 1

Einführung und Beispiele



Inhalt

- Einführung und Beispiele
 - Notationen
 - Lineares Programm
 - Grafische Lösung
 - Beispiele
 - Normalform

Notationen für K-Vektorraum

Zur Unterscheidung zwischen den Vektoren $\in V$ und den Skalaren $\in K$ schreiben wir die Vektoren mit fettgedruckten lateinischen Kleinbuchstaben, z.B.

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = (x_j) \in \mathbb{R}^n.$$

Für die Skalare nutzen wir üblicherweise griechische Kleinbuchstaben in Normalschrift, z.B.

$$\lambda \in \mathbb{R}$$
.

Zur Abkürzung schreiben wir die Vektoren teilweise auch zeilenorientiert, also $\mathbf{x} = (x_1, x_2, \dots, x_n)$.

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 13 / 406

Den Nullvektor bezeichnen wir mit 0. Demgegenüber bezeichnet 0 das neutrale Element des Körpers.

In den meisten nachfolgenden Fällen verzichten wir auf die Verwendung des Multiplikationssymbols ., sowohl bei der Multiplikation im Körper als auch bei der Multiplikation mit Skalaren. D. h.

$$\begin{array}{ccc} \lambda \mu & := & \lambda \cdot \mu \\ \lambda \mathbf{v} & := & \lambda \cdot \mathbf{v} \end{array}$$

$$\lambda \mathbf{v} := \lambda \cdot \mathbf{v}$$

für $\lambda, \mu \in K, \mathbf{v} \in V$.

Wir bewegen uns im Folgenden ausschließlich im \mathbb{R} -Vektorraum \mathbb{R}^n .

14 / 406

Notationen für Matrizen

Die Menge der reellen Matrizen mit m Zeilen und n Spalten bezeichnen wir mit $\mathbb{R}^{m \times n}$.

Zur Darstellung solcher Matrizen nutzen wir i. d. R. fette lateinische Großbuchstaben, z. B.

$$\mathbf{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = (a_{ij}) \in \mathbb{R}^{m \times n}.$$

Eine Nullmatrix stellen wir ebenfalls durch **0** dar. Aus dem Kontext ergibt sich, ob damit ein Nullvektor oder eine Nullmatrix gemeint ist.

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 15 / 406

Für eine Matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ bezeichnet $\mathbf{A}^T \in \mathbb{R}^{n \times m}$ die transponierte Matrix von \mathbf{A} .

Einen Vektor $\mathbf{x} \in \mathbb{R}^n$ können wir auch als einspaltige Matrix $\mathbf{x} \in \mathbb{R}^{n \times 1}$ auffassen.

Das Skalarprodukt $\langle \mathbf{x}, \mathbf{y} \rangle$ zweier Vektoren $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ können wir dann als Matrixprodukt $\mathbf{x}^T \mathbf{y}$ schreiben.

Für eine Matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ bezeichnet

- ullet $\mathbf{a}_i \in \mathbb{R}^n$ (Kleinbuchstabe mit tiefgestelltem Index) den *i*-ten Zeilenvektor und
- $\mathbf{a}^j \in \mathbb{R}^m$ (Kleinbuchstabe mit hochgestelltem Index) den j-ten Spaltenvektor von \mathbf{A} .

Also:

$$\mathbf{A} = (\mathbf{a}^1, \mathbf{a}^2, \dots, \mathbf{a}^n) = \begin{pmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{pmatrix}.$$

Die Einheitsvektoren $\mathbf{e}^1, \mathbf{e}^2, \dots, \mathbf{e}^n$ mit $\mathbf{e}^i = (x_i) \in \mathbb{R}^n$ und

$$x_j = \begin{cases} 1 & \text{falls } i = j \\ 0 & \text{sonst} \end{cases}$$

bilden die kanonische Basis des \mathbb{R}^n .

Die Matrix

$$\mathbf{E} := (\mathbf{e}^1, \mathbf{e}^2, \dots, \mathbf{e}^n) = egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix} \in \mathbb{R}^{n imes n}$$

bezeichnet die Einheitsmatrix.

17 / 406

Lineares Programm

Definition 1.1

Es seien $b_i, c_j, a_{ij} \in \mathbb{R}$ für $1 \le i \le m$ und $1 \le j \le n$.

Ein lineares Programm (LP) ist die Aufgabe, eine lineare Zielfunktion

$$z = F(x_1, \ldots, x_n) = c_1x_1 + \cdots + c_nx_n$$

für Entscheidungsvariablen $x_j \in \mathbb{R}$ zu maximieren oder zu minimieren unter Beachtung von linearen Nebenbedingungen der Form

$$a_{i,1}x_1 + \cdots + a_{i,n}x_n \leq b_i \quad (i = 1, \dots, m_1)$$

 $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i \quad (i = m_1 + 1, \dots, m_2)$
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \geq b_i \quad (i = m_2 + 1, \dots, m)$

und meist auch von Vorzeichenbedingungen $x_j \ge 0$ für einige oder alle $j = 1, \dots, n$.

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 18 / 406

Beispiel 1.2

Ein Eisverkäufer stellt stündlich bis zu 10 kg Eis der Sorten A bzw. B her.

	A	В
Verkaufspreis	80 EUR/kg	65 EUR/kg
Kosten	50 EUR/kg	40 EUR/kg
Energieaufwand	5 kWh/kg	2 kWh/kg
absetzbar	6 kg	9 kg

Es stehen höchstens 30 kWh stündlich zur Verfügung.

Entscheidungsvariablen seien die stündlich herzustellenden Mengen x_1 kg bzw. x_2 kg.

Zu maximieren sei die Differenz aus Preis und Kosten.

Modellierung für Beispiel 1.2

Maximiere

$$z = F(x_1, x_2) = 80x_1 + 65x_2 - 50x_1 - 40x_2 = 30x_1 + 25x_2$$

unter den Nebenbedingungen

und Vorzeichenbedingungen $x_1, x_2 \ge 0$.

20 / 406

Noch ein Beispiel-LP

Beispiel 1.3

Maximiere

$$x_1 + x_2$$

unter den Nebenbedingungen

und den Vorzeichenbedingungen

$$x_1, x_2 \geq 0.$$

Zulässige und optimale Lösung

Definition 1.4

Ein Vektor $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, der alle Neben- und Vorzeichenbedingungen erfüllt, heißt zulässige Lösung eines LP.

Mit \mathcal{X}_{LP} bezeichnen wir die Menge der zulässigen Lösungen, auch zulässiger Bereich genannt, eines linearen Programms LP.

Eine zulässige Lösung $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ heißt optimale Lösung eines LP, wenn es keine zulässige Lösung \mathbf{x} mit besserem Zielfunktionswert als $F(\mathbf{x}^*)$ gibt.

 $F(\mathbf{x}^*)$ heißt dann optimaler Zielfunktionswert oder kurz Maximum bzw. Minimum.

 \mathcal{X}_{IP}^* bezeichnet die Menge der optimalen Lösungen von LP.

Bemerkung: Wenn aus dem Kontext heraus das lineare Programm eindeutig ist, schreiben wir auch \mathcal{X} und \mathcal{X}^* statt \mathcal{X}_{LP} bzw. \mathcal{X}_{LP}^* .

Grafische Lösung linearer Programme

Wir betrachten zwei Entscheidungsvariablen x_1 und x_2 :

$$a_1x_1+a_2x_2=b$$

ist die Gleichung einer Geraden im \mathbb{R}^2 .

$$a_1x_1 + a_2x_2 \le b$$
 und $a_1x_1 + a_2x_2 \ge b$

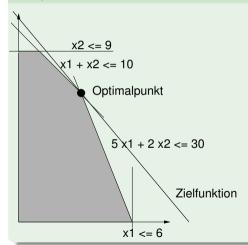
beschreiben jeweils eine Halbebene mit der Geraden $a_1x_1 + a_2x_2 = b$ als Rand.

Auch $x_1 \ge 0$ und $x_2 \ge 0$ stellen Halbebenen dar.

Der zulässige Bereich ist der Schnitt endlich vieler Halbebenen.

Grafische Lösung zu Beispiel 1.2

Beispiel 1.5



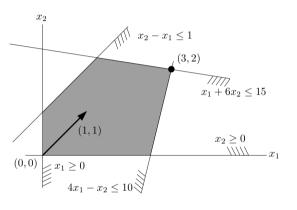
Die Zielfunktion $z = 30x_1 + 25x_2$ wird ebenfalls durch eine Gerade dargestellt.

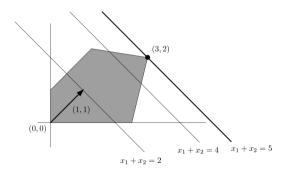
Wachsendes *z* bedeutet eine Verschiebung nach rechts oben.

Verschiebe nach oben, solange die Gerade durch $\mathcal X$ verläuft!

Optimale Lösung im Schnittpunkt der Geraden $x_1 + x_2 = 10$ und $5x_1 + 2x_2 = 30$, also $\mathbf{x}^* = \left(\frac{10}{3}, \frac{20}{3}\right)$ mit $z^* = \frac{800}{3}$.

Grafische Lösung zu Beispiel 1.3

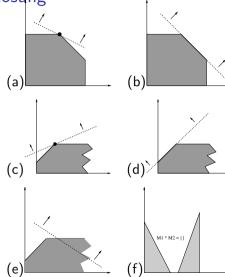




Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 25 / 406

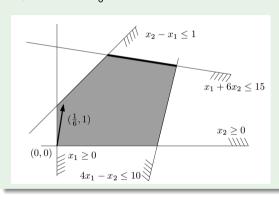
Mögliche Situationen bei grafischer Lösung

- (a) beschränktes \mathcal{X} , eindeutige optimale Lösung
- (b) beschränktes \mathcal{X} , nichteindeutige optimale Lösung
- (c) unbeschränktes \mathcal{X} , eindeutige optimale Lösung
- (d) unbeschränktes \mathcal{X} , nichteindeutige optimale Lösung
- (e) unbeschränktes \mathcal{X} , keine optimale Lösung
- (f) $\mathcal{X} = \emptyset$, keine zulässige Lösung

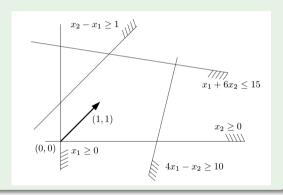


Beispiel 1.6

Beispiel 1.3 mit $\frac{1}{6}x_1 + x_2$ als Zielfunktion.



 $Mit \ge statt \le bei zwei Ungleichungen:$



Maximalflussproblem als LP

Gegeben:

- gerichteter Graph G = (V, E).
- Kapazitätsfunktion $c: E \to \mathbb{R}_{>0}$.
- Quelle $s \in V$ und Senke $t \in V$ mit $s \neq t$.

Ein zulässiger Fluss ist eine Funktion $x: E \to \mathbb{R}$ mit

- 0 < x(e) < c(e) für alle $e \in E$.
- $\sum x(e) = \sum x(e)$ für alle $v \in V \setminus \{s, t\}$. $e=(w,v)\in E$ $e=(v,w)\in E$

Gesucht ist ein zulässiger Fluss mit maximalem Flusswert $\Phi(x)$:

$$\Phi(x) = \sum_{e=(s,v)\in E} x(e) - \sum_{e=(v,s)\in E} x(e).$$

Modelliere den Fluss x(e) auf Kante $e \in E$ mithilfe der Variablen x_e . Dann lautet das LP:

$$\max \sum_{e=(s,v)\in E} x_e - \sum_{e=(v,s)\in E} x_e$$

unter den Nebenbedingungen

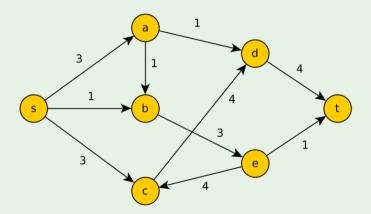
$$\sum_{e=(w,v)\in E} x_e - \sum_{e=(v,w)\in E} x_e = 0 \qquad \text{für alle } e\in E$$

sowie Vorzeichenbedingungen $x_e \ge 0$ für alle $e \in E$.

29 / 406

Beispiel 1.7

Wie lautet das Maximalfluss LP für den folgenden Graphen?



Lösung: Tafel ♥ ...

Regressionsproblem als LP

Gegeben sind Datenpunkte (x_i, y_i) für i = 1, ..., n.

Gesucht sind $a, b \in \mathbb{R}$, so dass die Summe der Abweichungen von y_i zu der Geraden ax + b an den Stellen x_i minimal wird, also

$$E(a,b) = \sum_{i=1}^{n} |ax_i + b - y_i| \longrightarrow \min.$$

- Sei $r_i = ax_i + b y_i$ diese (vorzeichenbhaftete Abweichung).
- Damit gilt $ax_i + b r_i = y_i$.
- Dann lautet die Zielfunktion: $\min \sum_{i=1}^{n} |r_i|$.
- Problem: Der Betrag in der Zielfunktion (weil r_i nicht vorzeichenbeschränkt ist).

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 31/406

- Sei $r_i = u_i v_i$ mit $u_i > 0$ und $v_i > 0$.
- Dann lautet die Zielfunktion jetzt:

$$\sum_{i=1}^n u_i + \sum_{i=1}^n v_i \longrightarrow \min.$$

• Die Nebenbedingungen werden damit zu:

$$x_i a + b - u_i + v_i = y_i$$
.

- Vorzeichenbedingungen:
 - $u_i, v_i > 0$ für i = 1, ..., n
 - ▶ $a, b \in \mathbb{R}$

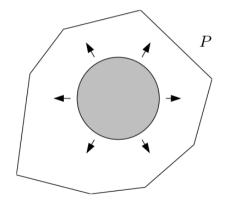
32 / 406

Größter Kreis in einem konvexen Polygon

Gegeben sei ein konvexes Polygon P.

Gesucht sind Mittelpunkt und Radius eines Kreises, so dass

- der Kreis vollständig in P liegt und
- der Radius maximal ist.

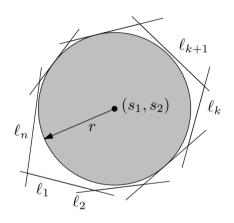


- Wir gehen davon aus, dass keine Polygonseite vertikal (parallel zur y-Achse) ist.
- Dann können wir die i-te Polygonseite durch eine Gerade gi mit Geradengleichung

$$y = a_i x + b_i$$

beschreiben.

- Die Indizes i seien so gewählt, dass die Geraden g_1, \ldots, g_k das Polygon von unten beschränken und
- die Geraden g_{k+1}, \ldots, g_n von oben.



Es gilt

$$a_ix + b_i = y \Leftrightarrow -a_ix + y - b_i = 0 \Leftrightarrow \frac{-a_ix + y - b_i}{\sqrt{a_i^2 + 1}} = 0.$$

- Die rechte Gleichung entspricht der Hesseschen Normalform für die Gerade g_i.
- Abstand eines Punktes $\mathbf{s} = (s_1, s_2)$ von g_i :

$$\left|\frac{-a_is_1+s_2-b_i}{\sqrt{a_i^2+1}}\right|.$$

• Lage: \cdot (innerhalb $|\cdot|$) ≥ 0 wenn **s** überhalb von g_i liegt, $\cdot \leq 0$ wenn unterhalb.

 Konsequenz: Damit ein Kreis mit Mittelpunkt s und Radius r komplett in P liegt, müssen die Nebenbedingungen

$$rac{-a_{i}s_{1}+s_{2}-b_{i}}{\sqrt{a_{i}^{2}+1}} \geq r \qquad i=1,\ldots,k$$
 $rac{-a_{i}s_{1}+s_{2}-b_{i}}{\sqrt{a_{i}^{2}+1}} \leq -r \qquad i=k+1,\ldots,n$

erfüllt sein.

• Variablen: s_1, s_2, r

• Zielfunktion: max r

• Vorzeichenbedingungen: $r \ge 0$

36 / 406

Schnittproblem als ganzzahliges LP

Aus 3 m langen Metallstangen sollen

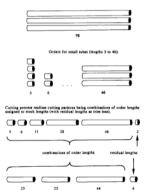
- 10 Stangen mit 1 m,
- 45 Stangen mit 2 m,
- 21 Stangen mit 1.5 m und
- 42 Stangen mit 0.9 m

Länge hergestellt werden.

Die Anzahl der dafür notwendigen 3 m Stangen soll minimiert werden.

Zunächst stellen wir alle möglichen maximale Schnittmuster auf, d.h. alle Möglichkeiten, eine 3 m Stange in die geforderten Längen zu zersägen, so dass der verbleibende Rest nicht mehr verwendbar ist.

Muster	1 m	2 m	1.5 m	0.9 m
1	3	0	0	0
2	1	1	0	0
3	0	0	2	0
4	0	1	0	1
5	2	0	0	1
6	1	0	0	2
7	0	0	0	3
8	1	0	1	0
9	0	0	1	1



Variablen

$$x_i = \text{Anzahl der Stangen mit Schnittmuster } i, 1 \leq i \leq 9$$

Zielfunktion

$$\min x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9$$

unter den Nebenbedingungen

39 / 406

Bemerkungen zum Schnittproblem

- lineare Zielfunktion und lineare Nebenbedingungen
- Problem: Ganzzahligkeit der xi
- Ganzzahligkeit als weitere Nebenbedingung ist die typische Eigenschaft kombinatorischer Optimierungsprobleme.
- LP-Relaxation (LP mit Verzicht auf Ganzzahligkeit) liefert eine untere Schranke für den optimalen Zielfunktionswert
- Lösungsmethoden: siehe Kapitel 7 sowie die Vorlesungen zu "Kombinatorische Optimierung"

Ganzzahliges lineares Programm

Definition 1.8

Ein lineares Programm mit zusätzlichen Bedingungen $x_i \in \mathbb{Z}$ für alle Variablen x_i heißt ganzzahliges lineares Programm (integer linear program, ILP).

Gilt $x_i \in \mathbb{Z}$ nicht für alle sondern nur für einige der Variablen, so spricht man von einem gemischt-ganzzahligen linearen Programm (mixed integer program, MIP).

Das lineare Programm, das entsteht, wenn wir in einem ILP bzw. MIP die Bedingungen für die Ganzzahligkeit weglassen, heißt LP-Relaxation.

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 41 / 406

Effiziente Lösbarkeit von LPs

LPs sind effizient lösbar.

- In der Praxis
 - Es stehen leistungsfähige Programmpakete (kommerziell und Open-Source) für die Lösung von LPs mit mehreren tausend Variablen und Nebenbedingungen zur Verfügung.
 - In der Theorie
 LPs können in polynomieller Zeit gelöst werden (in Bezug auf die Anzahl der Variablen und Nebenbedingungen).

Demgegenüber ist die ganzzahlige lineare Programmierung (in allgemeiner Form) NP-vollständig.

Lineare Algebra vs. Lineare Programmierung

	Basic problem	Algorithm	Solution set
Linear	system of	Gaussian	affine
algebra	linear equations	elimination	subspace
Linear	system of	simplex	convex
programming	linear inequalities	method	polyhedron

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 43 / 406

Maximumproblem

Definition 1.9

Ein I P der Form

Maximiere
$$z = F(x_1, ..., x_n) = c_1 x_1 + \cdots + c_n x_n = \sum_{j=1}^{n} c_j x_j$$

unter den Nebenbedingungen

$$\sum_{i=1}^n a_{ij}x_j \leq b_i \quad (i=1,\ldots,m)$$

und den Vorzeichenbedingungen $x_i \ge 0 (j = 1, ..., n)$ heißt Maximumproblem.

Peter Becker (H-BRS) 44 / 406 Wintersemester 2023/24

Kompakte Schreibweise

Mit $\mathbf{c}, \mathbf{x} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m$ und $\mathbf{A} \in \mathbb{R}^{m \times n}$ können wir ein Maximumproblem auch schreiben als:

Maximiere $\mathbf{c}^T \mathbf{x}$ unter den Nebenbedingungen $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ und den Vorzeichenbedingungen $\mathbf{x} > \mathbf{0}$.

Bezeichungen:

Zielfunktionsvektor c
Variablenvektor x
Koeffizientenmatrix A
Begrenzungsvektor, rechte Seite b

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 45 / 406

Beispiel 1.2 in kompakter Schreibweise

Beispiel 1.10

Maximiere

$$(30,25)$$
 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

unter den Nebenbedingungen

$$\begin{pmatrix} 1 & 1 \\ 5 & 2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \le \begin{pmatrix} 10 \\ 30 \\ 6 \\ 9 \end{pmatrix}$$

und den Vorzeichenbedingungen

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

Umformung in ein Maximumproblem

Satz 1.11

Zu jedem LP lässt sich ein äquivalentes LP in Form eines Maximumproblems formulieren.

Beweis.

- Ersetze zu minimierende Zielfunktion z = F(x) durch zu maximierende Zielfunktion $-z = -F(\mathbf{x}).$
- Transformiere \geq -Nebenbedingung durch Multiplikation beider Seiten mit -1 in eine <-Nebenbedingung.
- Eine Gleichung $\sum_{i=1}^n a_{ij}x_i = b_i$ kann durch zwei Ungleichungen $\sum_{i=1}^n a_{ii}x_i \leq b_i$ und $\sum_{i=1}^{n} -a_{ij}x_{i} \leq -b_{i}$ ersetzt werden.
- Falls für x_i beliebige Werte aus \mathbb{R} erlaubt sind, so ersetze x_i durch die zwei Variablen $x_i^+ \ge 0$ und $x_i^- \ge 0$ mit $x_i = x_i^+ - x_i^-$.

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 47 / 406

Beispiel 1.12

Wir überführen das folgende LP in ein Maximumproblem:

Minimiere

$$z=3x_1-4x_2$$

unter den Nebenbedingungen:

$$2x_1 + 3x_2 \leq 7
x_1 - 2x_2 \geq 4
3x_1 + 2x_2 = 6
x_1 \geq 0, x_2 \in \mathbb{R}.$$

Fortsetzung Beispiel 1.12

Zunächst sorgen wir für eine Maximierung und stellen alle Nebenbedingungen als \leq Nebenbedingungen dar:

Maximiere

$$-z = -3x_1 + 4x_2$$

unter den Nebenbedingungen:

$$2x_1 + 3x_2 \leq 7
-x_1 + 2x_2 \leq -4
3x_1 + 2x_2 \leq 6
-3x_1 - 2x_2 \leq -6
x_1 > 0, x_2 \in \mathbb{R}.$$

Fortsetzung Beispiel 1.12

Nun wird durch $x_2 = x_2^+ - x_2^-$ mit $x_2^+, x_2^- \ge 0$ die fehlende Vorzeichenbeschränkung eliminiert. Wir erhalten:

Maximiere

$$-z = -3x_1 + 4x_2^+ - 4x_2^-$$

unter den Nebenbedingungen:

$$2x_{1} + 3x_{2}^{+} - 3x_{2}^{-} \leq 7$$

$$-x_{1} + 2x_{2}^{+} - 2x_{2}^{-} \leq -4$$

$$3x_{1} + 2x_{2}^{+} - 2x_{2}^{-} \leq 6$$

$$-3x_{1} - 2x_{2}^{+} + 2x_{2}^{-} \leq -6$$

$$x_{1}, x_{2}^{+}, x_{2}^{-} \geq 0.$$

Normalform

Definition 1.13

Ein LP liegt in Normalform vor, wenn es die Form hat:

Maximiere
$$z = F(x_1, ..., x_n) = \sum_{j=1}^n c_j x_j$$

unter den Nebenbedingungen
$$\sum_{j=1}^n a_{ij} x_j = b_i \quad (i=1,\ldots,m)$$

und Vorzeichenbedingungen
$$x_j \ge 0$$
 $(j = 1, ..., n)$.

In kompakter Darstellung:

Maximiere $\mathbf{c}^T \mathbf{x}$ unter den Nebenbedingungen $\mathbf{A} \mathbf{x} = \mathbf{b}$ und den Vorzeichenbedingungen $\mathbf{x} > \mathbf{0}$.

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 51 / 406

Umformung in Normalform

Satz 1.14

Zu jedem LP lässt sich ein äquivalentes LP in Normalform formulieren.

Beweis.

Nach Satz 1.11 lässt sich zu jedem LP ein äquivalentes Maximumproblem formulieren. Es reicht daher zu zeigen, dass jedes Maximumproblem in Normalform überführt werden kann.

Hierzu führen wir für die m Ungleichungen die Schlupfvariablen x_{n+1}, \ldots, x_{n+m} ein, die in der Zielfunktion mit 0 bewertet werden.

Die Variablen x_1, \ldots, x_n heißen Strukturvariablen.

Fortsetzung Beweis.

Die Normalform ergibt sich dann durch:

Maximiere $z = \sum_{j=1}^n c_j x_j + \sum_{j=n+1}^{n+m} 0 \cdot x_j$ unter den Bedingungen

$$\sum_{j=1}^n a_{ij}x_j + x_{n+i} = b_i \quad (i = 1, \dots, m)$$

und Vorzeichenbedingungen

$$x_j \geq 0 \quad (j=1,\ldots,n+m).$$

In Matrixschreibweise lautet die Normalform

$$z = F(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$$

unter den Bedingungen

$$Ax = b, \quad x \ge 0.$$

Kanonische Normalform

Definition 1 15

Gelten in der Matrixschreibweise für die Normalform die Eigenschaften

$$\mathbf{b} \geq \mathbf{0}, \ \mathbf{c} = egin{pmatrix} c_1 \ dots \ c_n \ 0 \ dots \ 0 \end{pmatrix} \ \ \mathrm{und} \ \ \mathbf{A} = \left(egin{array}{ccc} a_{1,1} & \cdots & a_{1,n} & 1 & & 0 \ dots & & dots \ a_{m,1} & \cdots & a_{m,n} & 0 & & 1 \end{array}
ight),$$

so ist das LP in kanonischer Form.

Peter Becker (H-BRS) Lineare Optimierung Wintersemester 2023/24 54 / 406

Beispiel 1.16

Maximiere

$$z=30x_1+25x_2$$

unter den Bedingungen

Für die Nebenbedingungen führen wir die Schlupfvariablen x_3, x_4, x_5, x_6 ein und erhalten ...

Fortsetzung Beispiel 1.16.

Maximiere

$$z = 30x_1 + 25x_2 + 0 \cdot x_3 + \cdots + 0 \cdot x_6$$

unter den Bedingungen

und
$$x_j \ge 0 \ (j = 1, ..., 6)$$
.

Fortsetzung Beispiel 1.16.

In Matrixschreibweise:

Maximiere

$$z = \begin{pmatrix} 30 & 25 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_6 \end{pmatrix}$$

unter den Bedingungen

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 5 & 2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 10 \\ 30 \\ 6 \\ 9 \end{pmatrix} \text{ und } \begin{pmatrix} x_1 \\ \vdots \\ x_6 \end{pmatrix} \ge \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Zusammenfassung

- Lineares Programm (LP): lineare Zielfunktion und lineare Nebenbedingungen
- Nebenbedingungen eines LPs sind Gleichungen oder Ungleichungen in nicht strikter Form.
- Ganzzahliges LP, ILP: Variablen dürfen nur ganzzahlige Werte annehmen.
- Viele bekannte Probleme können als I P oder II P formuliert werden.