Prof. Dr. Peter Becker Fachbereich Informatik

Analysis (Musterlösung)

Klausur Wintersemester 2015/16 23. März 2016

Name:	Vorname:

Matrikelnr.:

Aufgabe	1	2	3	4	5	6	Summe
Punkte	10	10	10	10	10	10	60
erreicht							

Mit 24 Punkten haben Sie die Klausur bestanden, ab 48 Punkte erhalten Sie eine 1.0.

Es sind keine Hilfsmittel erlaubt.

Sie müssen Ihre Antworten begründen.

Tipp: Schauen Sie sich erstmal alle Aufgaben an.

Viel Erfolg!

Aufgabe 1 (2+3+2+3=10 Punkte)

Entscheiden Sie für jede der Reihen von (a) bis (c), ob sie

- absolut konvergent,
- konvergent aber nicht absolut konvergent oder
- divergent

ist (mit Begründung).

(a)

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2 + \sqrt{n}}$$

(b)

$$\sum_{n=0}^{\infty} \left(\frac{5+n^2}{3+2n^2} \right)^n$$

(c)

$$\sum_{n=1}^{\infty} \frac{4n^2 + \sqrt{n}}{7n^3 + 3n}$$

Bestimmen Sie den Konvergenzradius der folgenden Potenzreihe:

(d)

$$\sum_{n=0}^{\infty} \binom{n+2}{n} x^n$$

Lösung:

(a) \sqrt{n} ist monoton wachsend und unbeschränkt, damit auch $2 + \sqrt{n}$ und damit ist $\frac{1}{2 + \sqrt{n}}$ eine monoton fallende Nullfolge. Mit dem Leibniz-Kriterium folgt, dass $\sum_{n=0}^{\infty} \frac{(-1)^n}{2 + \sqrt{n}}$ konvergent ist.

Die Reihe ist nicht absolut konvergent. Begründung: Es gilt $\frac{1}{2+\sqrt{n}} \geq \frac{1}{n}$ für $n \geq 4$. Damit ist die harmonische Reihe $\sum_{n=1}^{n} \frac{1}{n}$ ab n=4 eine Minorante. Da die harmonische Reihe divergent ist, ist somit auch $\sum_{n=0}^{\infty} \frac{1}{2+\sqrt{n}}$ divergent.

(b) Die Reihe ist absolut konvergent. Begründung mit dem Wurzelkriterium:

$$\sqrt[n]{\left|\left(\frac{5+n^2}{3+2n^2}\right)^n\right|} = \frac{5+n^2}{3+2n^2} = \frac{\frac{5}{n^2}+1}{\frac{3}{n^2}+2} \longrightarrow \frac{1}{2} < 1$$

2

(c) Die Reihe ist divergent. Begründung mit dem Minorantenkriterium:

$$\frac{4n^2 + \sqrt{n}}{7n^3 + 3n} \ge \frac{4n^2}{10n^3} = \frac{2}{5} \cdot \frac{1}{n}$$

und $\frac{2}{5} \sum_{n=1}^{\infty} \frac{1}{n}$ ist divergent.

(d) Zur Berechnung des Konvergenzradius nutzen wir das Quotientenkriterium:

$$\left| \frac{\binom{n+3}{n+1} x^{n+1}}{\binom{n+2}{n} x^n} \right| = \frac{\binom{n+3}{2}}{\binom{n+2}{2}} |x|$$

$$= \frac{\frac{(n+3)(n+2)}{2}}{\frac{(n+2)(n+1)}{2}} |x|$$

$$= \underbrace{\frac{n+3}{n+1}} |x| \longrightarrow |x|$$

Also R = 1.

Hinweis: Bei der ersten Umformung wurde

$$\binom{n}{k} = \binom{n}{n-k}$$

genutzt.

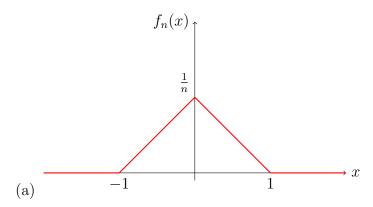
Aufgabe 2 (2+3+2+3=10 Punkte)

Wir betrachten die Folge der Funktionen $f_n : \mathbb{R} \to \mathbb{R}$, die gegeben ist durch

$$f_n(x) = \begin{cases} \frac{1 - |x|}{n} & \text{für } -1 \le x \le 1\\ 0 & \text{sonst} \end{cases}$$

- (a) Skizzieren Sie den Graphen von f_n .
- (b) Gegen welche Funktion f konvergiert die Funktionenfolge (f_n) punktweise? (Die Antwort muss begründet werden.)
- (c) Geben Sie die Bedingung für die gleichmäßige Konvergenz einer Funktionenfolge (f_n) gegen eine Grenzfunktion f an.
- (d) Zeigen Sie, dass die oben definierte Funktionenfolge (f_n) gleichmäßig gegen die Grenzfunktion f konvergiert.

Lösung:



- (b) Die Grenzfunktion lautet f(x) = 0. Begründung:
 - Für x < -1 oder x > 1 gilt $f_n(x) = 0$ für alle n und somit auch $\lim_{n \to \infty} f_n(x) = 0$.
 - Für $-1 \le x \le 1$ gilt: $|f_n(x)| \le \frac{1}{n} \longrightarrow 0$.

(c)

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 \forall x \in \mathbb{R} : |f_n(x) - f(x)| < \epsilon$$

(d) Der wichtigste Teil der Begründung (nämlich $|f_n(x)| \leq \frac{1}{n}$) steht schon in (b). Sei $\epsilon > 0$ beliebig. Wähle $n_0 := \left\lceil \frac{1}{\epsilon} \right\rceil$. Damit gilt dann für alle $n \geq n_0$ und alle $x \in \mathbb{R}$:

4

$$|f_n(x) - f(x)| = |f_n(x)| \le \frac{1}{n} \le \frac{1}{n_0} \le \epsilon$$

Aufgabe 3 (4+2+2+2=10 Punkte)

(a) Für welche $a \in \mathbb{R}$ sind die folgenden Funktionen f und g stetig auf ganz \mathbb{R} ? Begründen Sie Ihre Antwort!

$$f(x) = \frac{x^3 + 3x^2 - 16x + 13}{a + x^2} \qquad g(x) = \begin{cases} (x+1)e^{x+1} & \text{für } x > 0\\ a & \text{für } x \le 0 \end{cases}$$

- (b) Ist die Funktion g aus (a) in $x_0 = 0$ differenzierbar? Begründen Sie Ihre Antwort!
- (c) Zitieren Sie den Zwischenwertsatz!
- (d) Zeigen Sie: Die Funktion $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ mit

$$f(x) = 6\sin^2(x) + \sin(x) - 1$$

hat mindestens zwei Nullstellen.

Lösung:

- (a) -f ist als rationale Funktion überall dort stetig, wo der Nenner $\neq 0$ ist. Das Nennerpolynom $a+x^2$ hat genau dann keine Nullstelle, wenn a>0 ist. Also ist f für a>0 stetig auf ganz \mathbb{R} .
 - Da die Funktionen $(x+1)e^{x+1}$ und a stetig sind, ist g immer stetig auf $\mathbb{R} \setminus \{0\}$. Damit g auch in $x_0 = 0$ stetig ist, müssen dort der links- und rechtsseitige Funktionsgrenzwert übereinstimmen.

$$\lim_{x \nearrow 0} g(x) = \lim_{x \nearrow 0} a = a$$

$$\lim_{x \searrow 0} g(x) = \lim_{x \searrow 0} (x+1) e^{x+1} = 1 \cdot e^{1} = e$$

Also ist g für a = e stetig auf ganz \mathbb{R} .

- (b) Wir bilden die links- und rechtsseitige Ableitung:
 - Für x > 0 gilt $g'(x) = (x+2)e^{x+1}$ und somit g'(0+) = 2e.
 - Für $x \le 0$ gilt g'(x) = 0 und somit g'(0-) = 0.

Wegen $2e \neq 0$ ist damit g in $x_0 = 0$ nicht differenzierbar.

- (c) Es sei $f : [a, b] \to \mathbb{R}$ eine stetige Funktion mit f(a) < f(b). Dann existiert für alle $y \in [f(a), f(b)]$ ein $x \in [a, b]$ mit f(x) = y.
- (d) Es gilt:

$$\sin(-\frac{\pi}{2}) = -1$$
, $\sin(0) = 0$, $\sin(\frac{\pi}{2}) = 1$

und damit

$$f(-\frac{\pi}{2}) = 6 \cdot (-1)^2 - 1 - 1 = 4, \quad f(0) = 6 \cdot 0 + 0 - 1 = -1, \quad f(\frac{\pi}{2}) = 6 \cdot 1 + 1 - 1 = 6$$

Mit dem Zwischenwertsatz folgt, dass -f (und damit auch f) im Intervall $\left(-\frac{\pi}{2},0\right)$ eine Nullstelle hat und dass f im Intervall $\left(0,\frac{\pi}{2}\right)$ eine Nullstelle hat.

5

Aufgabe 4 (3+3+4=10 Punkte)

Bestimmen Sie für (a) und (b) die Grenzwerte:

(a)

$$\lim_{x \to 0} \frac{e^{2x} - (1+x)^2}{x^2}$$

(b)

$$\lim_{x \to \infty} \frac{\log(2x)}{2x^3 + 1}$$

(c) Es sei $f(x) = \frac{1}{\sqrt{x+1}}$. Zeigen Sie mittels vollständiger Induktion:

$$f^{(n)}(x) = (-1)^n \cdot \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n} \cdot (x+1)^{-\frac{2n+1}{2}}$$

Lösung:

(a)

$$\lim_{x \to 0} \frac{e^{2x} - (1+x)^2}{x^2} = \lim_{x \to 0} \frac{2e^{2x} - 2(1+x)}{2x} = \lim_{x \to 0} \frac{4e^{2x} - 2}{2} = \frac{4 \cdot 1 - 2}{2} = 1$$

(b)

$$\lim_{x \to \infty} \frac{\log(2x)}{2x^3 + 1} = \lim_{x \to \infty} \frac{\frac{2}{2x}}{6x^2} = \lim_{x \to \infty} \frac{1}{6x^3} = 0$$

(c) n = 0:

$$f^{(n)}(x) = f(x) = \frac{1}{\sqrt{x+1}} = (-1)^0 \cdot \frac{1}{2^0} (x+1)^{-\frac{1}{2}}$$

Bemerkung: $1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)$ ist für n=0 als leeres Produkt gleich 1.

 $n \to n+1$:

$$f^{(n+1)}(x) = (f^{(n)}(x))'$$

$$I.V. \qquad \left((-1)^n \cdot \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n} \cdot (x+1)^{-\frac{2n+1}{2}} \right)'$$

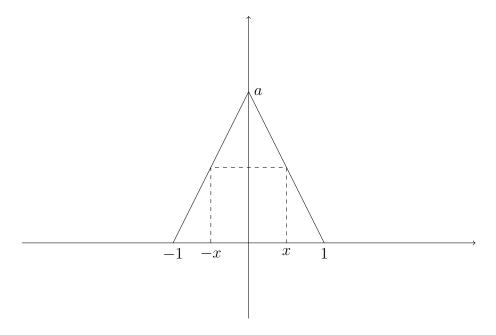
$$= (-1)^n \cdot \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n} \cdot \left(-\frac{2n+1}{2} \right) (x+1)^{-\frac{2n+1}{2}-1}$$

$$= (-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}{2^{n+1}} (x+1)^{-\frac{2n+3}{2}}$$

$$= (-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}{2^{n+1}} (x+1)^{-\frac{2(n+1)+1}{2}}$$

Aufgabe 5 (5+5=10 Punkte)

(a) Es sei a > 0. Wir bilden ein Dreieck mit den Eckpunkten (-1,0), (1,0) und (0,a) und legen in dieses Dreieck wie in der folgenden Zeichnung skizziert ein Rechteck.



Für welches x ist der Flächeninhalt solch eines Rechtecks maximal?

(b) Es sei $f: \mathbb{R} \to \mathbb{R}$ eine zweimal differenzierbare konvexe Funktion. Zeigen Sie, dass dann auch die Funktion $\exp(f(x))$ konvex ist.

Lösung:

(a) – Die Gerade, die durch die Punkte (0, a) und (1, 0) geht, können wir durch die Funktion

$$f(x) = -a(x-1)$$

beschreiben (Steigung ist -a, Nullstelle bei 1).

- Wegen der Symmetrie gilt damit für den Flächeninhalt A(x) des Rechtecks:

$$A(x) = 2x \cdot f(x) = -2ax(x-1) = -2a(x^2 - x)$$

Wir wollen den Flächeninhalt maximieren. Also suchen wir ein Maximum. Dazu bilden wir die erste Ableitung:

$$A'(x) = -2a(2x - 1)$$

Wir setzen die Ableitung gleich 0:

$$A'(x) = 0 \Leftrightarrow -2a(2x - 1) = 0 \Leftrightarrow 2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}$$

Somit haben wir bei $x = \frac{1}{2}$ einen kritischen Punkt. Wegen

$$A''(x) = -4a < 0$$

7

muss es sich hierbei um ein Maximum handeln.

- (b) Da f(x) zweimal differenzierbar ist, ist auch $\exp(f(x))$ als Verkettung zweimal differenzierbar.
 - Eine zweimal differenzierbare Funktion g(x) ist genau dann konvex, wenn $g''(x) \ge 0$ gilt.
 - Somit ist $\exp(f(x))$ genau dann konvex auf \mathbb{R} , wenn $(\exp(f(x)))'' \ge 0$ für alle $x \in \mathbb{R}$ gilt. Wir leiten also $\exp(f(x))$ zweimal ab.

$$(\exp(f(x)))' = \exp(f(x)) \cdot f'(x)$$

Damit folgt:

$$(\exp(f(x)))'' = (\exp(f(x))) \cdot f'(x))'$$

$$= \exp(f(x))f'(x)f'(x) + \exp(f(x))f''(x)$$

$$= \underbrace{\exp(f(x))}_{>0} \underbrace{((f'(x))^2 + f''(x))}_{\geq 0} \ge 0$$

 $\exp(f(x)) > 0$, weil die Exponentialfunktion stets > 0 ist.

 $(f'(x))^2$ ist als Quadrat ≥ 0 .

f''(x) ist ≥ 0 , weil nach Voraussetzung f zweimal differenzierbar und konvex ist.

Aufgabe 6 (3+4+3=10 Punkte)

Ermitteln Sie eine Stammfunktion:

(a)

$$\int x \sin(2x^2) \, dx$$

Berechnen Sie die folgenden Integrale:

(b)

$$\int_{-1}^{1} (x^2 + 1) e^x dx$$

(c)

$$\int_0^\infty x e^{-x^2} dx$$

Lösung:

(a)

$$\int x \sin(2x^2) dx = \frac{1}{4} \int 4x \sin(2x^2) dx$$

Substitution: $f(x) = \sin(x) \Rightarrow F(x) = -\cos(x), g(x) = 2x^2 \Rightarrow g'(x) = 4x.$

$$= -\frac{1}{4}\cos(2x^2)$$

(b)

$$\int (x^2 + 1)e^x dx$$

Partielle Integration: $f(x) = x^2 + 1 \Rightarrow f'(x) = 2x, g'(x) = e^x \Rightarrow g(x) = e^x$

$$= (x^2 + 1)e^x - 2 \int xe^x \, dx$$

Nochmals partielle Integration: $f(x) = x \Rightarrow f'(x) = 1, g'(x) = e^x \Rightarrow g(x) = e^x$

$$= (x^{2} + 1)e^{x} - 2\left(xe^{x} - \int e^{x} dx\right)$$

$$= (x^{2} + 1)e^{x} - 2xe^{x} + 2e^{x}$$

$$= (x^{2} - 2x + 3)e^{x}$$

Somit erhalten wir:

$$\int_{-1}^{1} (x^2 + 1)e^x dx = (x^2 - 2x + 3)e^x \Big|_{x=-1}^{x=1} = 2e - 6e^{-1}$$

(c)

$$\int_0^\infty x e^{-x^2} dx = \lim_{t \to \infty} \int_0^t x e^{-x^2} dx$$

Wir bilden eine Stammfunktion:

$$\int x e^{-x^2} dx = -\frac{1}{2} \int (-2x) e^{-x^2} dx$$

Substitution: $f(x) = e^x \Rightarrow F(x) = e^x, g(x) = -x^2, \Rightarrow g'(x) = -2x$

$$=-\frac{1}{2}e^{-x^2}$$

Damit erhalten wir:

$$\int_0^t x e^{-x^2} dx = -\frac{1}{2} e^{-x^2} \Big|_{x=0}^{x=t} = \frac{1}{2} \left(1 - e^{-t^2} \right)$$

So ergibt sich:

$$\lim_{t \to \infty} \int_0^t x e^{-x^2} dx = \lim_{t \to \infty} \frac{1}{2} \left(1 - \underbrace{e^{-t^2}}_{\to 0} \right) = \frac{1}{2}$$