

Fachbereich Informatik Prof. Dr. Peter Becker Dr. Marco Hülsmann

Analysis Übungsblatt 11 SS 2020

Aufgabe 1 (Lokale Extrema und Konvexität)

Wir betrachten die Funktion $f: [-\sqrt{2}, \sqrt{2}] \to \mathbb{R}$ mit

$$f(x) = x^2 + \sqrt{2 - x^2}$$

- (i) Bestimmen Sie die erste und zweite Ableitung von f.
- (ii) Wo ist die Funktion konvex bzw. konkav? Bestimmen Sie alle lokalen Extrema von f.

Aufgabe 2 (Konvexität und Ungleichungen)

- (a) Zeigen Sie, dass die Funktion $f(x) = x \log(x)$ streng konvex ist.
- (b) Zeigen Sie: Für alle $a, b \in \mathbb{R}_+$ gilt:

$$(a+b)\log(a+b) \le a\log(2a) + b\log(2b)$$

Aufgabe 3 (Mittelwertsatz der Differentialrechnung)

Bestimmen Sie die Stelle, an der die Tangente an die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^3$ dieselbe Steigung wie die Sekante durch die Punkte A(-1, -1) und B(1, 1) hat!

Aufgabe 4 (Regel von de l'Hospital)

Bestimmen Sie die folgenden Grenzwerte:

(i)
$$\lim_{x \to \infty} \frac{x^2 e^x}{(e^x - 1)^2}$$

(ii)
$$\lim_{x \to 1} \frac{x^x - x}{1 - x + \log(x)}$$

Aufgabe 5 (Newton-Verfahren)

Das Newton-Verfahren ist ein Verfahren zur approximativen (numerischen) Berechnung von Nullstellen von differenzierbaren Funktionen $f: \mathbb{R} \to \mathbb{R}$, ebenso wie das Heron-Verfahren zur Wurzelbestimmung. Es liefert ebenfalls quadratische Konvergenz, allerdings ist es äußerst startwertabhängig, d.h. nicht jede Wahl eines Startwerts führt zwangsläufig zum Ziel.

- a) Gehen Sie von einem Startwert $x^{(0)} \in \mathbb{R}$ aus, und bestimmen Sie die Nullstelle der Tangente an f im Punkt $(x^{(0)}, f(x^{(0)}))$. Dies ist die neue Iteration $x^{(1)}$ des Newton-Verfahrens. Formulieren Sie daraus eine allgemeine Iterationsvorschrift für das Newton-Verfahren!
- **b)** Beschreiben Sie ein Newton-Verfahren zur approximativen Bestimmung von $\pi!$
- c) Schreiben Sie ein Computerprogramm zur Nullstellenberechnung mithilfe des Newton-Verfahrens. Verwenden Sie als Toleranz $\tau=10^{-12}$. Testen Sie Ihr Programm anhand der Funktion

$$f(x) = \sin(x) - 0.5x - 0.1$$

mit den Startwerten $x^{(0)} \in \{0.1, 1, 1000\}$. Konvergiert das Newton-Verfahren? Wenn ja, verifizieren Sie die quadratische Konvergenz!

Aufgabe 6* (Lokale Extrema und Konvexität)

Wir betrachten die Funktion $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ mit

$$f(x) = \frac{x}{(x-1)^2}$$

Wo ist die Funktion konvex bzw. konkav? Bestimmen Sie alle lokalen Extrema von f.

Aufgabe 7* (Satz von Rolle)

Sei $f:[0,\pi]\to\mathbb{R}$ gegeben durch $f(x):=\sin(x)(x-1)$. Geben Sie ein offenes Intervall an, wo f mindestens einen stationären Punkt besitzt!

Aufgabe 8* (Regel von de l'Hospital)

Bestimmen Sie die folgenden Grenzwerte mithilfe der Regel von de l'Hospital!

$$\lim_{x \to 0} \frac{\tan(x) - x}{x^3}$$

Hinweis: $tan(x) = \frac{\sin(x)}{\cos(x)}$

(ii)
$$\lim_{x \to \infty} \frac{x \log\left(1 - \frac{1}{x}\right) + 1}{\log\left(1 - \frac{1}{x}\right)}$$

(iii)
$$\lim_{x \to 0} \log(x) \tan(x)$$

Tipp: Schreiben Sie die Funktion als geeigneten Doppelbruch!

Aufgabe 9* (Lokale Extrema)

Bestimmen Sie alle lokalen Extrema der folgenden Funktionen! Sie brauchen nicht immer die 2. Ableitung zu berechnen.

Oftmals reicht ein Umgebungsargument!

(i)
$$f(x) = \frac{x-1}{x^2+1}$$

(ii)
$$f(x) = \frac{3x+2}{(x^2-4)^3}$$

(iii)
$$f(x) = \frac{2x-1}{(x^2-4x+3)^3}$$

(iv)
$$f(x) = 3x^5 - 25x^3 + 60x - 3$$

Aufgabe 10* (Anwendungen der Ableitung in der Geometrie)

Berechnen Sie die Stelle, an der die Tangenten von $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = x und $g: \mathbb{R} \to \mathbb{R}$ $g(x) = \sqrt[3]{x^3 - 3x^2}$ parallel sind!