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Abstract

Telepresence robots allow users to be spatially and socially present in remote
environments. Yet, it can be challenging to remotely operate telepresence robots,
especially in dense environments such as academic conferences or workplaces. In this
paper, we primarily focus on the effect that a speed control method, which
automatically slows the telepresence robot down when getting closer to obstacles, has
on user behaviors. In our first user study, participants drove the robot through a static
obstacle course with narrow sections. Results indicate that the automatic speed control
method significantly decreases the number of collisions. For the second study we
designed a more naturalistic, conference-like experimental environment with tasks that
require social interaction, and collected subjective responses from the participants when
they were asked to navigate through the environment. While about half of the
participants preferred automatic speed control because it allowed for smoother and safer
navigation, others did not want to be influenced by an automatic mechanism. Overall,
the results suggest that automatic speed control simplifies the user interface for
telepresence robots in static dense environments, but should be considered as optionally
available, especially in situations involving social interactions.

Introduction 1

Telepresence robots (TRs) are designed to allow a remote user to have a mobile 2

presence in a remote physical space. They consist of a video conferencing display and 3

series of cameras that are attached to a robotic ’body’ of some form with wheels to 4

support moving and remote driving. TRs have been used and tested in various 5

scenarios, including, but not limited to academic conferences [1, 2], home schooling [3, 4], 6

shopping [5], and remote office attendance and professional meetings [6–8]. All of these 7

studies have shown that TRs can increase social presence in remote 8

environments [5, 8, 9]. However, using a TR in a remote environment is not always easy. 9

Navigation challenges can arise due to the limited field of view of the TR’s camera [1], 10

the limited resolution of the camera images [1], the need to avoid obstacles and 11

people [2], and potentially un-intuitive input methods for controlling the robot [5]. 12

Many of these problems may result in a limited situational awareness of the user. Yet, 13
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such awareness is normally required to effectively navigate around. As a result of these 14

challenges, researchers have called for additional control mechanisms or forms of 15

feedback to aid TR drivers, such as wider fields of view [10,11] and additional 16

cameras [1]. In the work reported here, we use a speed control (SC) method that adjust 17

the speed of the TR based on distance in dense environments, i.e., functionality that 18

controls how fast the robot moves forward. Recently, SC methods have been introduced 19

to tele-robotics systems. In the work presented here, we focused on how such methods 20

change navigation and social behaviours of users. 21

Inspired by work on SC in Virtual Reality navigation, e.g., [12, 13], and in the 22

automotive sector, e.g., [14, 15], we implemented a SC method that uses sensory data 23

from ultrasonic range finders to automatically slow down the TR as it gets closer to 24

potential obstacles it might otherwise bump into, typically because the remote user 25

misjudged the speed and/or distance. Thus, the potential need for a support system, 26

such as SC, is higher when the user has to drive through a dense environment with 27

narrow passages, such as office environments with narrow corridors, a gathering of many 28

people in a conference hall, or other forms of social gatherings, where TR users interact 29

with other people. Previous work on speed control in industrial robotics had been 30

reported in the literature [16–18]. However, to our knowledge, the use of distance-based 31

speed control algorithms has not been studied for TRs in dense environments nor with 32

tasks in a conference-like environment. This motivated us to evaluate distance-based SC 33

in such environments. Our work builds on perceptual load theory: humans have limited 34

attentional resources and as users driving TRs often exhibit higher cognitive load [17], 35

we assume that using an automatic SC algorithm for a TR could help people to free 36

attention and reduce cognitive load, so as to reduce collisions, and improve navigation 37

behaviours, spatial awareness, and presence. Hence, instead of taking over navigation, 38

the system is designed to support user interaction. We do so by adding a simple 39

distance-based SC algorithm to the TR platform, the (original) Beam+ by Suitable 40

Technologies. 41

Based on this hardware platform, we present two major contributions. Our first 42

contribution is the evaluation of user navigation behaviours with a TR with 43

distance-based SC in dense environments. We evaluated these behaviours in our first 44

user study and showed that distance-based SC can improve navigation behaviour in 45

terms of reducing the number of collisions (while not increasing task execution time). 46

Our second contribution concerns social interaction with SC assistance: TRs are 47

designed to enable social interaction with remote people. Thus, we designed a second 48

study where participants had to not only navigate in a dense environment but also 49

socially interact with people. While SC slightly reduced task completion time and 50

number of collisions here, participant preferences on the SC changed when they 51

interacted socially. These results suggest that SC algorithms may not improve TR 52

navigation behaviour in every case, especially in a social environment. Overall, our 53

results show that SC significantly improves TR navigation behaviours through a 54

reduction in the number of collisions in static dense environments, but not when 55

interacting with people. These findings suggest that methods for automatically 56

adjusting TR speed based on proximity to objects are promising, however, design work 57

needs to carefully consider that activation of SC should still be controlled by the user. 58

1 Previous work 59

The design and usage of TRs has been widely studied. Researchers have found that TRs 60

provide stronger feelings of presence in a variety of remote environments (e.g., 61

conferences, schools, hospitals) when compared to using video conferencing systems, due 62

to one’s ability to move around and have a physical body in the remote space [1–4,8]. As 63
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a result, TRs have been shown to enhance relationships, including connections between 64

co-workers [8], school friends [3], and long-distance romantic partners [5, 19]. They can 65

support casual interactions and informal awareness in work environments because it is 66

easy to notice a person’s whereabouts when they have a TR embodiment [8]. In home 67

settings, they can allow distance-separated family members to share activities 68

together [5]. Sometimes the ability to ’bump into’ objects has been shown to be 69

beneficial and a means to enhance one’s feeling of remote presence (such as in a home 70

environment) [5]; however, in many situations it can be highly problematic and socially 71

awkward to run into objects or people using a TR, such as in an academic conference or 72

work setting [1]. Overall, people enjoy the agency and control that TRs bring. 73

Despite the benefits, TRs have been known to have operational challenges, as no one 74

individual owns the “embodiment” (the look and sound, e.g., [8, 20,21]) and there is a 75

lack of customization [22]. Privacy issues sometimes arise for TR users because they 76

must appropriate themselves for two different environments simultaneously: their own 77

local environment as well as the remote one [1, 22]. The spatial relationship between the 78

robot and the environment can also be difficult to understand [1, 22]. This can be 79

especially difficult when remotely operating TRs in unknown spaces [1]. Next to the 80

unknown spatial layout and one’s own position and (spatial) orientation (as represented 81

through the TR), the dynamic nature of an environment can make navigating TRs even 82

more challenging. For example, both the movement of objects and their density in the 83

environment, e.g., spaces crowded with people, can make navigation difficult [2]. While 84

researchers have focused on increasing the user’s spatial orientation and awareness in 85

the remote space, e.g., through wide angle cameras [10,11] or the usage of sound 86

feedback [11], navigation often is still limited as the amount and kinds of feedback the 87

users receive remain constrained when compared to how we navigate as human’s in the 88

real world. So, generally, the amount of cues one receives may not be enough to 89

maintain an adequate level of spatial awareness, in order to interpret a situation and 90

mentally project towards its future status [23] to navigate around effectively. 91

There is a variety of research that explores feedback for teleoperation situations. For 92

example, researchers have looked into using haptic feedback to improve accuracy and 93

awareness [24] and navigation via collision avoidance [25,26]. Lee et al. [27] explored the 94

performance of haptic feedback on navigation performance with a mobile 95

(non-telepresence) robot and found benefits. Studies of self-motion have similarly 96

explored feedback in virtual reality settings. For example, visual cues [28], sound 97

cues [29], and foot steps [30] have been tested as forms of feedback and shown value. 98

Our approach, in contrast, does not rely on feedback per se, but instead modifies the 99

speed of the TR directly to avoid the need for such feedback. 100

Several methods for automatic SC have been developed in different fields, including 101

Virtual Reality and the automotive sector. To automatically control the speed of a 102

viewer in a virtual environment, Mackinlay et al. scaled the distance from the viewer to 103

a target to determine the movement speed [12]. Ware and Fleet developed this idea 104

further and presented a method that considers the distances to all visible points [13]. 105

They found that the minimum distance works best to determine the ideal speed, but 106

that the average was also competitive. The usage of sensor-data to control velocity is 107

widely used in commercial vehicles, and generally known under the name adaptive 108

cruise control. These systems often rely on some form of adaptive control system [14]. 109

Within the frame of these systems, research among others has focused on autonomous 110

throttle and brake actuation [31,32], break system modeling [33], stop-and-go 111

mechanisms [34] and distance control [15]. The control of autonomous vehicles shows 112

great resemblance with these systems, and is usually comprised of perception, decision, 113

and control components to drive a vehicle. The speed controller of an autonomous 114

vehicle thereby is often based on two control levels: the higher level that deals with 115
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acceleration, and the lower level that controls the throttle and brakes. Models that 116

drive the SC can be self-adaptive over time, based on learning methods [35,36]. DJI 117

Drones 1 include an automatic deceleration and stop feature when there is a obstacle in 118

front of them. Similarly, humanoid robots, such as the Pepper robot, have proximity 119

sensors which allows such robots to slow down and adjust the speed of the device based 120

on human interaction through a Gaussian Mixture Model [37]. The purpose of these 121

robots are different from TRs; TRs are designed to facilitate interaction with people, 122

with an aim to provide a remote presence with visual and auditory feedback to the 123

operator and the people they interact with. 124

Most recently, shared control algorithms were used as assistance systems to control 125

the speed of TRs [17,18]. Yet, the proposed methods increased the task execution time 126

and were not tested in dense and social environments. The SC system we implemented 127

resembles the SC methods used in autonomous vehicles, as we semi-autonomously 128

adjust speed based on the context around the TR. 129

In this study, we used a Beam+2 TR as in Figure 1. We also used an attached 130

Arduino Mega, a Rasperbery Pi 3, and six out of twelve ultrasonic distance sensors on 131

the device, as illustrated in Figure 1. This apparatus had been designed and previously 132

used in different work [38] 3. In this previous work, authors used the distance sensor 133

ring to measure the distance around the TR to give haptic feedback to the users’ feet. 134

While this setup was designed for a different research purpose, we developed our system 135

based on the previously developed hardware. For our work, we altered the software 136

running on the Arduino and Pi to support a specific distance sampling schema that 137

suits the needs for SC algorithms. In this document, we still describe the hardware in 138

section 4, as it is directly relevant to our work. Yet, we explicitly state that the sensor 139

ring was not designed and built by us nor is a contribution of this work. 140

2 Motivation 141

As noted before, driving a TR can be challenging, which can be caused by a variety of 142

reasons. For example, the cameras often restrict what can be seen around the TR, and 143

often causes distance estimation problems. As a result, especially in dense and 144

potentially highly dynamic scenes, it will be difficult to gather and maintain situational 145

awareness around the TR [39]. To alleviate driving challenges and inspired by 146

autonomous vehicle control paradigms that rely on multi-directional sensing capacities 147

that also sense in directions not directly covered in the camera view, we chose to explore 148

the use of TR driving aids. Yet, instead of fully autonomous control, we want to provide 149

users with a suitable level of control to not reduce their sense of control and agency, but 150

without needing to provide additional feedback through the UI. 151

2.1 Hypotheses 152

Our hypotheses are directly connected to previous work, which showed that 153

automatically adapting a TR’s speed lowers the operator’s cognitive load [16,17], helps 154

people to avoid obstacles [40], and decreases the number of collisions [16]. These studies 155

neither tested SC algorithms in static dense environments nor focused on their effect 156

during social interaction. To assess the usefulness of the implemented distance-based SC 157

methods, we formulated the following hypotheses, which we investigated in two user 158

studies. 159

1https://www.dji.com
2https://www.suitabletech.com/products/beam
3The research topic, software, hypotheses, analyses, results, findings and contributions of our current

and the previous work, which introduced the apparatus, do not overlap.
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(a) (b)

Fig 1. (a) Beam TR used in the study, (b) additional hardware components mounted
on the base of the Beam.

H1. Distance-based speed control improves TR navigation behaviour: 160

We predicted that automatically slowing down the TR as it moves closer to potential 161

obstacles and other objects would allow users to navigate more safely and avoid 162

collisions more effectively. Similar to other domains [12] and to autonomous assistance 163

research with TRs [16–18,40], we expect to see better performance with a SC algorithm. 164

H2. Distance-based speed control also increases the user’s spatial 165

presence in the remote environment: We hypothesized that automatic SC would 166

indirectly improve users’ sense of spatial presence and situational awareness of their 167

remote surroundings, by allowing them to focus less on the challenge of navigation, thus 168

freeing up mental resources to be more present and aware of their remote surroundings. 169

While assessing H1 and H2, we also explore user reactions to the automatic SC 170

algorithm, through interviews and questionnaires after the study tasks. Previous work 171

on TRs had shown that assistance through SC improves TR navigation behaviour in 172

term of number of collisions in static environments (at the cost of increased task 173

times) [17,18] and decreases cognitive load [17]. Yet, interestingly, SC algorithms have 174

not been evaluated in an environment where a user has to remotely interact socially, 175

which is a very common use case for TRs. 176

To test the effect of the distance-based SC method on TR navigation behaviour, we 177

evaluated it first in a tightly-controlled static environment with both narrow passages as 178

well as wide corridors (Study 1). To increase the ecological validity of our results, we 179

then investigated in Study 2 the user experience in a conference-like setting with social 180

interaction tasks. 181
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3 Telepresence Robot, Apparatus and Software 182

used in this study 183

3.1 Distance Sensors and Data Acquisition 184

In this study, we used hardware that had been designed for another research 185

project [38]. This approach allows us to demonstrate that SC can be applied to different 186

TRs, even if they cannot be modified or have been designed with SC in mind. Their 187

work mounted a ring of twelve ultrasonic distance sensors onto the “neck” of the Beam+ 188

TR. These equally-spaced 40 kHz ultrasound sensors were connected to the analog pins 189

of an Arduino Mega, and are able to reliably detect objects at distances between 2 and 190

120 cm in front of them. With this setup, obstacles around the TR could be located 191

within a 30° cone for each sensor. Here, to increase the data acquisition rate we did not 192

use all of the available sensors. Instead, and since we were only interested in forward 193

motions, we collected data from the sensors at the front of the ring, which corresponds 194

to a 180° field of “view”. To further increase the sampling frequency and to reduce the 195

interference between sensors, we collected data only from alternating sensors in the 196

sequence within any given sampling interval. In other words, we collected data in the 197

following order: the first, fourth, second, fifth, third, and sixth sensor, and we repeated 198

this sequence. As a result, we achieved a 40 Hz (25 ms) data process rate. This rate 199

proved to be sufficient for the implemented SC method within the environments used in 200

our user studies. 201

Since the Arduino Mega provides a sufficient number of input pins and provides 202

libraries to convert analog ultrasound distance readings to digital information, we use it 203

as a ‘bridge’ between the sensors and the Raspberry Pi. The software running on the 204

Arduino software thus only manages the analog sensor data acquisition and converts 205

this information to digital data that is sent to the Raspberry Pi through a serial link. 206

The data received by the serial link is forwarded to the desktop computer by the 207

Raspberry Pi through the OSC (Open Sound Control) library and User Datagram 208

Protocol (UDP) communication with Python 3.4 code. The Raspberry Pi was 209

connected to the university’s wireless network. 210

3.2 Desktop Computer 211

We used a PC with an Intel (R) Core (TM) i7-5890 CPU with 16 GB RAM and a 212

NVIDIA GeForce RTX2080 graphics card. A BenQ 27” HD HP desktop monitor and, 213

to control the Beam+, a Logitech keyboard as well as a Xbox One gamepad were 214

connected to the computer. 215

3.3 User Interface and User Interaction 216

For the GUI, participants interacted through the regular TR interface provided by the 217

Beam. We did not change or alter the features in this GUI, as such modifications are 218

not supported by the Beam manufacturer. A sample screenshot of the GUI is shown in 219

Figure 2. 220

The GUI of the Beam is designed to show two camera views: a forward-facing 221

camera view, which is mostly used to socially interact, and a downward facing camera, 222

which is mostly used to navigate in the environment. This GUI only allows users to 223

change the split of the (single) window between the downward-facing and forward-facing 224

camera video streams. There are no default dimensions: users can adjust the camera 225

view size based on their preference and the Beam software always stores and re-uses the 226

latest video size setting. For the first study, we wanted users to only focus on the 227

obstacles, so we enlarged the lower camera view to the maximum values allowed by the 228
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Beam GUI, which are 860 pixel x 650 pixel or 27 cm x 20 cm, as seen in Figure 2(a). In 229

the second study, we wanted users to use both, i.e., the downward camera to navigate 230

the obstacle course and the forward facing one to interact with other people. To allow 231

users to focus simultaneously on social interactions and navigation, we allocated 620 232

pixel x 465 pixels or 19 cm x 14.5 cm to the forward-facing camera, as in Figure 2(b). 233

(a) (b)

Fig 2. Beam GUI Layouts during the experiment. Layout for (a) User Study 1 and (b)
User Study 2. Parts of images blurred for anonymity.

We note that the optical flow in the camera due to the movement of a TR is already 234

a form of feedback for the user: drivers can easily perceive how fast or slow the robot is 235

moving by looking at the camera view(s). Thus, we did not provide any additional 236

feedback mechanism for the speed beyond the existing camera views of the remote 237

environment. 238

For the driving interaction, we used either a regular keyboard or a Xbox One 239

gamepad to control speed and direction. While participants were using the keyboard, 240

they pressed arrow keys with their dominant hand. In this condition, the SC is Boolean 241

(ON/OFF), i.e., the robot is either moving a constant speed forward or stops. More 242

specifically, the up/down arrow key corresponds to forward/backward movement at a 243

constant speed. When participants were using a gamepad, they operated the left 244

joystick with their thumb to control the TR device. In this condition, participants were 245

able to alter the speed of the TR continuously with the joystick. In either condition, 246

participants did not have to use other keys or buttons on the keyboard, respectively 247

gamepad. To be able to compare the TR navigation behaviour for the two input devices 248

objectively, we did not add any additional feedback to input devices, such as active 249

feedback through vibrating the gamepad with the motion of the joystick. 250

3.4 Distance-Based Speed Control 251

We implemented a SC algorithm with Python 3.4. The purpose of this software was to 252

receive the commands given by the user (originally destined to be sent directly) to the 253

Beam software and to alter them according to the distance between the TR and the 254

obstacle(s). For this we used pynput and the Python keyboard library to intercept 255

speed-related keyboard input events and altered these events as specified below, so that 256

the Beam software receives input that corresponds to the speed specified by the result 257

of the distance-based SC method. For the gamepad, we used the pyvjoy library which 258

maps all joystick input to the [0-1] range, with 0.5 corresponding to the neutral position. 259

The software was running in an infinite loop. In each iteration, we updated the 260

incoming distance data from sensors sent by Raspberry Pi, ran the distance-based speed 261

algorithm, and sent steering commands to the TR. It took about 23 ms (43 Hz) to run 262

each loop. Thus, on average, the data for each of the 6 sensors was updated every 138 263

ms (≈ 7 Hz). This was not pre-chosen, but was the highest average update rate we 264

could reach with all hardware, software, and networking-induced delays. Previous work 265
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on remote surgery studies had identified that the average delay should be less than 700 266

ms in their application [41]. Our application scenario does not have the same 267

life-or-death criticality as surgery, nor does it have the same millimeter-accuracy 268

requirements. Since we cannot increase the data acquisition rate, and this data rate is 269

larger than required for precise tasks, we believe that our update rate is acceptable. 270

Moreover, we asked our participants after the studies if they had observed any 271

significant delays that might have affected their driving performance, but no one made 272

negative comments about the potential effects of delays. 273

While there are various possibilities for the SC methods , algorithms, and user 274

interfaces [16–18], we implemented a distance-based SC algorithm that works as a 275

middle-ware between the user and TR GUI. Since Beam+ is not an open system, we did 276

not, and in fact could not, change or alter the code or hardware of the Beam+. We also 277

did not include additional GUI elements, including visual and auditory feedback to the 278

user, since not all TR GUIs uses the same interface. Moreover, we wanted this setup to 279

be applicable to other TR systems to improve generalizability of the results. 280

For the SC, we experimented with different distance/speed curves, such as a linear, 281

exponential, or logarithmic model. We also tried a PID (proportional, integral, 282

derivative) controller, which is commonly used in the control systems work [42,43]. In 283

our pilot trials, we observed that a PID controller did not work well, since the time 284

interval between two distance samples at full speed was too large. To improve data 285

acquisition, we used only half the available sensors, and, through various code 286

optimizations, such as using multi-threading maximized the sampling rate within the 287

given hardware platform. Yet, even this was not good enough to robustly drive the TR 288

with a PID controller or derivative algorithm, and we thus did not use this approach. 289

After optimizing the system as far as possible, the final update rate for our system was 290

≈ 7Hz for the distance sensors, which included all hardware, software, and networking 291

delays. Additionally, when a command was sent to the motors, there were delays due to 292

other factors, such as network ping. Yet, as mentioned above, we were limited to control 293

our system through manipulating the input stream of the commercial (closed) product, 294

which limited our technical options and the control frequency. Before starting the 295

experiments, we tested the SC algorithm in pilot studies with 2 experts with more than 296

2 years of TR driving experience and 5 non-expert users. None of these individuals 297

participated in the main experiments. To create a movable obstacle, we used a chair 298

with 4 legs on casters and put duct-tape at the height of the sensors. In this pilot setup, 299

if the SC algorithm failed, the TR hit the chair, and since the chair was movable, the TR 300

moved the chair around. This allowed pilot participants to try different SC algorithms 301

without causing damage. We did not observe a notable performance difference between 302

linear, exponential, and logarithmic models in this pilot. Pilot participants also did not 303

seem to notice differences between the algorithms. Given that we did not observe big 304

differences and pilot participants did not prefer a specific SC algorithm, we chose a 305

linear SC mapping for simplicity, i.e., SystemInput = UserInput − distance ∗ 0.0025, as 306

it was the most robust option and worked well with our limited data acquisition rate. 307

The UserInput corresponds to the input speed value given by the user to the system. 308

For both gamepad and keyboard, the maximum input value was set to be 0.85 m/s 309

through the GUI of the Beam, which corresponds to a leisurely walking speed, similar 310

to how one would walk when engaged in a conversation. We checked this speed with the 311

distance sensors on the TR and approved it. We also tested this speed in other pilot 312

studies, where participants were walking next to the TR and subjects found this level of 313

speed adequate for the context. This method has been used in other walking speed and 314

TR research, e.g., [44, 45]. 315

As mentioned in the Apparatus section, there are six sensors facing forward on the 316

sensor ring, each of which covers a 30° cone. To compute the distance, we average the 317
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Fig 3. Distance-based speed control mapping for the speed of the TR.

distances from the front two sensors of the Beam+ as the forward distance. We then use 318

this value as SystemInput to control the speed of the TR (through the Beam software). 319

To achieve stable results, we only activated the SC algorithm at distances between 10 320

and 120 cm. The suggested highest distance to correctly measure distance with the used 321

ultrasonic sensors is 120 cm. Since the experiment aims to study TR navigation 322

behaviour in narrow and dense spaces, we did not modulate the speed in sections where 323

all obstacles are far away and 120 cm was enough for this purpose. Also, if the distance 324

between the sensor and any obstacle was less than 10 cm, the TR is either very close to 325

hitting an obstacle or has already hit it. Since we wanted the TR not to stop but only 326

to move slowly at distances less than than 10 cm, the control method shown in Figure 3 327

assisted users in moving the TR slowly when they were very close to obstacles, by 328

thresholding the movement speed to 0.17 m/s, which is the minimum value for the 329

motors of the used TR to move smoothly. At lower speeds, the TR jerks or does not 330

respond to commands correctly. 331

The resulting distance/speed curve of the overall system is shown as Figure 3. If the 332

TR gets close to objects, but the objects are to the side, we also reduce the speed of the 333

robot to 0.17 m/s based on the minimum distance received from the four side sensors. 334

This allows the user to maneuver in a dense environment in situations where there is no 335

obstacle in front of the TR. We also included a method to decrease jerky movements. 336

When the TR is commanded to change the speed, we did not immediately increase or 337

decrease the speed of the device, but did it in two steps to eliminate jerky movements. 338

For instance, while the TR was stationary, if the user gave the full speed command, we 339

first used an intermediate speed of 0.51 m/s and only sent the final speed of 0.85 m/s 340

after ≈ 138 ms. Similarly, when the device got suddenly closer to objects, e.g., when 341

rounding a corner or edge with obstacles immediately after, we did not decrease the 342

speed immediately, but averaged it with the previous input. This helped us to reduce 343

unexpected and unnatural sudden speed changes which can distort the equilibrium of 344

the device, i.e., can lead to jerky movements and forward/backward wobbling of the TR. 345

With the graded transitions, this issue did not occur. 346

4 User Study 1 347

In this first study, we designed a static dense environment with milestones that 348

represent various challenges that could be found in dense environments and investigated 349

how user navigation behaviours and their experience are affected by the implemented 350

SC method in an obstacle course with different input devices. In our context, increased 351

density corresponds to a higher amount of objects with smaller distances between them 352

in the environment. 353
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4.1 Experimental setup 354

To investigate the effectiveness of the SC algorithms in typical conference-like dense 355

situations where users have to navigate in narrow and wider areas, we created a dense 356

environment as shown in Figures 4 and 5 and asked users to drive through it while 357

avoiding collisions. 358

S1

S1

S2

S2

S3

S3
S7

S7

S6

S6

S4

S4S5

S5

S8

S8

Start/F
inish Line

Fig 4. Real world view of the obstacle course. This photo was taken from top of the
ladder as a panoramic picture. Distortions in the picture caused by the panoramic
stitching.

Figures 4 and 5 illustrate the same environment. The dark pink box (bottom right 359

corner in the photo) indicates the start and finish area for the experiment. We first 360

divided the obstacle course into 42 smaller milestones M1-M42, as shown in Figure 5. 361

Between every milestone, TR had to accomplish a specific small-task, such as turning 362

90° in a tunnel (e.g., M3-M4, M12-M13, M34-M34 and M23-M24), turning 90° in 363

open-space (e.g., M6-M7, M8-M9, M10-M11 and M36-M37), going underneath 364

the ladder (M19-M20 and M27-M28) or going straight in a tunnel (M11-M12 and 365

M35-M36). These milestones were used to collect data in detail. To ease the data 366

analysis, and based on the number of collision observations, we also divided the 367

movement of the TR into 8 different segments, labelled S1-S8 in both Figures 4 and 5. 368

When we were designing the obstacle course, we tried to include sections that 369

correspond to various real life cases. We used empty boxes and other non-critical 370

objects to create an obstacle course that was safe to drive through for both the TR and 371

the environment. Since the motors of the Beam+ TR are fairly powerful, it was possible 372

to dislocate even heavy objects with it. Thus, we designed our obstacle course to make 373

it a safe environment and to avoid the potential for damaging the TR or other 374

equipment. We picked objects, such as carton boxes, that made it easy to reset any 375

portions of the obstacle course, if participants collided with and thus moved any of the 376

objects that comprised the obstacle course. We also taped such objects to fill gaps 377

between obstacles at the level of the sensors in the constrained path segments. Since the 378

ultrasound sensors can return different distance values for different materials, we also 379

used the tape as a uniform “reflector” material to address this issue for those objects 380

that had notably different reflective properties. During the experiment, the 381

experimenter fixed any re-located portions of the previous part of the obstacle course 382

when the TR reached the next milestone. 383
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4.2 Participants 384

Twelve participants (10 female, average age of 21.9, SD 1.9) participated in our 385

experiment. All participants were right-handed and had never used a TR before. The 386

experiment was approved by the local ethics committee, [2015s0283], and participants 387

provided written informed consent before starting the experiment. 388

4.3 Procedure 389

Before starting the experiment, the experimenter explained the task and asked 390

participants to follow the experimenter in a physical walk-through of the obstacle 391

course, using the same path as for the TR. We did this to familiarize them with the 392

navigation task and spatial layout of the environment, and ensure that they knew the 393

correct path before starting the actual experiment. After pilot studies we decided on 394

this procedure as our main objective was to investigate participants’ TR maneuvering 395

behaviours and not their way-finding skills. 396

After walking the path, we asked participants to complete a demographic 397

questionnaire, to collect data about their age, gender, gaming experience, and if they 398

have a driver’s license. Then, we asked them to experiment with the TR in an open 399

space, so they would get used to the interface, until they got comfortable with driving 400

the TR. To make the driving task more realistic and to enable participants to focus on 401

driving in the experiment, participants were given a map of the obstacle course, so they 402

did not have to “search” for the path. They also completed a single iteration of the task 403

(see below) through the obstacle course, where they experienced the four different 404

conditions (keyboard or gamepad, with and without the SC for each input device), in 405

the four main sections of the course. This enabled them to learn the layout of the 406

environment. When the participants felt ready to start the experiment, we asked them 407

to move the TR to the start/finish area shown in Figure 5. 408

Before participants started to drive the TR through the obstacle course in the 409

evaluation session, we started the screen recording. We recorded the Beam GUI at 30 410

Hz to enable later analysis of the movement of the TR. Participants had to follow the 411

path segments from S1 to S8. A trial ended when the TR crossed the boundaries of the 412

finish line. To simulate a realistic telepresence setting, we blocked the participant’s view 413

of the obstacle course and the TR with large white large carton sheets so they never saw 414

the TR or obstacles course directly during the main study. 415

After the experiment, participants filled a questionnaire, where we asked participants 416

about their preferred driving method (with or without SC) and input method (gamepad 417

or keyboard). We also asked them open-ended questions, such as, the reasons behind 418

their preference of driving method and other comments. Further, we used 7-point Likert 419

questions to investigate the ease of interaction of each condition, i.e., with and without 420

the SC driving method, with the keyboard or the gamepad. We also asked if they 421

thought that SC improved their TR navigation behaviour in terms of task completion 422

time, hitting objects, and finally their physical and mental fatigue after the experiment. 423

During each task, an experimenter was in the obstacle course, and fixed any 424

re-located or hit objects/boxes after the TR passed them. To enable this, we marked all 425

object positions with black tape on the ground. Since the TR had to drive through each 426

path segment in both directions, there was a need to fix the boxes as soon as possible 427

(before the TR traversed the same segment again in the other direction). The 428

experimenter also assisted participants through voice feedback if they got confused or 429

deviated from the designated path. The logged data for any such episodes was manually 430

removed before the main analysis process. 431
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4.4 Experimental design 432

Each of the 12 participants performed 4 trials total, consisting of a factorial 433

combination of two Input Devices (ID2: Keyboard and Gamepad) × two Speed 434

Control conditions (SC2: ON and OFF). The order of trials was counterbalanced 435

across conditions using a two-dimensional Latin Square design to avoid potential 436

learning effects. In total, the experiment took about 40 minutes for each participant. 437

By using the video recorded off the Beam GUI, we were able to collect timing data 438

(in seconds) for each instance when the TR passed each milestone in Figure 5. We also 439

counted the number of hits that occurred on both the front and the back of the TR as 440

Collision Side (CS2: Front or Back). We further divided these hits into two different 441

collision categories: while looking at the the video, if the TR physically “bumped” 442

into an object but did not dislocate it, we classified this as a “touch”. If the TR bumped 443

an object hard enough to dislocate it, we recorded this as a “hit” (CC2: Hit and Touch). 444

4.5 Data Analysis 445

The data were analyzed using 2ID × 2SC repeated measures (RM) ANOVAs for the 446

independent variables Input Device and Speed Control, with α = 0.05 in SPSS 24. We 447

used the Sidak method for post-hoc analyses. For non-normal distributions we used the 448

ART method [46]. All detailed results, such as tables and figures for each dependent 449

variable, can be found in the appendix. Fisher’s test results for study 1 are shown in 450

Table 1. Means (M), Standard Deviations (SD), Standard Error of Means (SEM), 95% 451

Confidence Intervals (CI) vales are shown in Table 3. We also included the results for 452

task completion time in Figure 9, average number of collision in Figure 10, average 453

number of front touch in Figure 11, average number of back touch in Figure 12, average 454

number of front hit results in Figure 13, and average number of back hit in Figure 14. 455

4.5.1 Task completion time 456

Completion time was normal after a logarithmic transformation (Shapiro-Wilk test 457

result was W (48) = 0.982, n.s., Skewness = 0.249, Kurtosis = -0.422). The RM ANOVA 458

results showed no significant main effects of SC or input device conditions, nor any 459

significant interactions. Detailed results are shown in Figure 9, Table 1 and Table 3. 460

Results suggest that subjects might be faster with a gamepad when SC was turned off, 461

but we could not identify any significant differences. 462

4.5.2 Collisions 463

Collision dependent variable was normal after a logarithmic transformation 464

(Shapiro-Wilk test result was W (48) = 0.962, n.s., Skewness = -0.22, Kurtosis = -0.85). 465

As illustrated in Figure 10(b) and Figure 10(e), adding SC reduced the average number 466

of collisions from M = 6.36, 95%-CI [5.52, 7.20] to M = 3.69, 95%-CI [3.01, 4.37] 467

(F (1, 11) = 36.75, p < 0.001, η2 = 0.77). We were not able to identify any significant 468

main effect of input device, or any interactions with SC. The results suggest that 469

participants collided less with a gamepad, but the difference was not significant. 470

Detailed results are shown in Figure 10, Table 1 and Table 3. 471

4.5.3 Detailed collision analysis 472

Only the Front Touch collision dependent variable was normal after log transformation 473

(Shapiro-Wilk test result was W (48) = 0.953, Skewness = 0.55, Kurtosis = -0.31). 474

According to the results for front side touches (Figure 11(b) and Figure 11(e)), SC 475

significantly reduced the number of such collision (F(1,11)= 21.782, p¡0.001, η2 = 0.664) 476
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from M = 8.62, 95%-CI [10.08, 7.16] to M = 5.83, 95%-CI [4.67, 6.99]. Moreover, SC 477

significantly reduced the number of hits with the front side of the TR (F(1,11)= 23.318, 478

p¡0.001, η2 = 0.679) from M = 5.62, 95%-CI [3.78, 7.46] to M = 1.041, 95%-CI 479

[0.41, 1.67] as shown in Figure 13(b) and Figure 13(e). Even though we did not acquire 480

distance data at the back part of the TR and thus our system could not avoid hits that 481

might occur at the back of the TR, SC significantly reduced the number of hits with 482

back part of the device from (F(1,11)= 19.062, p¡0.001, η2 = 0.634) M = 3.45, 95%-CI 483

[2.42, 4.49] to M = 1.66, 95%-CI [0.88, 2.45] in Figure 14(b) and Figure 14(e). 484

4.5.4 Detailed analysis of segments and milestones 485

In this study, we recorded 966 collision points. Only a total of 60 collisions by 12 486

participants occurred in S2, S4, S6, and S8. When we analyzed the data for these 487

segments, we did not find any significant quantitative results to report. However, we 488

observed that when the SC algorithm was activated in S8, between M39-M40 where 489

the tunnel gets narrower, participants adjusted their steering to avoid collisions with 490

obstacles. The SC was not actively reducing the number of collision, but it was also 491

acting as a warning mechanism by providing (indirect) visual feedback through the 492

slowdown of the TR. According to the analysis of the time spent in individual 493

milestones, subjects were significantly slower in milestones M1-M2, M2-M3, 494

M25-M26, and M26-M7, see Figure 6(a). Interestingly, they also hit obstacles less 495

often in these same milestones with the front side as visible in Figure 6(b), except for 496

M2-M3. In M2-M3, SC decreased the number of hits, but we were not able to 497

measure an effect. The milestones M1-M2, M2-M3, M25-M26, and M26-M7 498

belong to segments where the path is strongly curved, as shown in Figures 4 and 5. The 499

detailed milestone analysis results show that SC helped subjects to avoid hitting 500

obstacles in tight, curved path segments, which took longer to navigate. However, in 501

other milestones, such as M16-M17 and M0-M1 in Figure 6(b), M32-M33 in Figure 502

15(b) and Figure 15(c), and M16-M17 in Figure 15(d), SC decreased the number of 503

collision while not increasing the navigation time. The remainder of the results for the 504

milestone analysis can be found in Figure 15. 505

4.5.5 Subjective Measurements 506

At the end of the experiment, we asked participants to fill a short questionnaire about 507

their experience, thoughts, and insights. We asked participants as to which driving 508

method was preferred, with or without SC. All participants preferred SC over the 509

condition without SC. They commented on the SC in various ways, including that “they 510

felt more safe”, “less confusing”, “easy to use” and “gave more time to control the 511

device”. We also used a 7-point Likert scale to evaluate user perceptions for the SC 512

algorithm and input methods and analyzed the results to investigate subjective 513

measures. None of the participants thought that it was difficult to drive the TR (1-easy, 514

7-difficult, Mean (M)=2.42, Standard Deviation (SD)=0.89). Only one participant 515

reported that it was “somewhat difficult” to use the gamepad and the rest thought it 516

was easy (1-easy, 7-difficult, M=2.92, SD=1.14). Only two participants thought that SC 517

was “somewhat unlikely” to have improved their performance in terms of time (1-very 518

likely, 7-very unlikely, M=2.67, SD=1.04) and none of them thought that SC worsened 519

their performance in terms of number of collisions (1-very likely, 7-very unlikely, 520

M=2.58, SD=1.55). Half of the participants preferred the keyboard and the other half 521

the gamepad. Participants also reported that they only felt moderate physical and 522

mental fatigue after the experiment (1-I feel very rested, 7-I feel very tired, for physical 523

and mental fatigue of M=3.25, SD=1.09 and M=3, SD=1, respectively). 524
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(a)

(b)

Fig 6. Detailed milestone analysis for (a) time and (b) average number of hits from the
front side. Only path segments with significant differences in at least one of the
measures are shown.
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4.6 Discussion of User Study 1 525

Study 1 results suggest that adding automatic SC reduced the overall number of 526

collisions when driving a TR, irrespective of whether the TR was controlled by gamepad 527

or keyboard. These results also support our hypothesis, H1, that distance-based SC 528

improves TR navigation behaviour in dense environments. The reduced number of 529

collision also matches findings of previous TR studies. Yet, unlike previous work, SC 530

did not decrease the task execution time [16–18,40]. 531

In the detailed analysis of segments and milestones, we observed that touches and 532

hits occur less frequently when the SC is enabled. M3-M4 and M25-M26 involve a 533

curved path that requires slow movements to traverse without hitting objects. This part 534

of the maze also forces users to adapt to the speed-accuracy trade-off. Because the TR 535

slowed down with SC, participants did not hit objects as frequently and thus got less 536

upset when hitting objects (H1) or spent less time correcting their driving (H2), which 537

might explain the lack of a time difference between the SC conditions. It also supports 538

H2 since the number of collision decreased with SC and users preferred the SC 539

condition. 540

Note, however, that automatic SC did not improve task completion time, even 541

though all participants stated that they preferred driving the TR with added SC, 542

mentioning amongst other factors the increased safety and ease of use. We speculate 543

that this could be a positive side effect of hitting fewer objects in the maze. Instead of 544

getting faster, subjects spent their time to carefully steer the TR through the maze so 545

as not to hit objects. Since the task instructions mentioned both not hitting the objects 546

and to finish the course as fast as possible, they perceived this as an positive outcome. 547

Moreover, previous work showed that using SC, i.e., reducing the speed of the TR, also 548

increased task completion time [17, 18]. Yet, the SC algorithm used in this work did not 549

significantly increase the task execution time, which we see as a positive indication. 550

The hits and touches that occurred at the front of the TR significantly decreased 551

when the SC is enabled. Moreover, even though we did not collect and use the distance 552

data from the back part of the TR, the number of hits on objects in the obstacle course 553

with the back part of the TR significantly decreased. While we did not see such a 554

difference for the touches at the front of the TR, a 360 ° distance range sensor with a 555

higher data rate could increase reduce the number of touches with the front of the 556

device, relative to what was observed with the limited-range ultrasound distance sensors 557

we had at our disposal. 558

Through our interviews and questionnaire, we also learned that all the subjects 559

preferred SC while they navigate in a static dense environment. We believe that 560

continuously steering the TR in this static dense environment did require constant 561

mental effort for navigation. As explained above, the SC algorithm helped subjects to 562

reduce the number of collision by reducing the speed of the device automatically, which 563

supports previous findings [17,18]. Thus, participants had to worry less about hitting 564

objects, which is the likely reason for all subjects preferring SC in Study 1. 565

Within this study, we analyzed how user behaviours changed with a SC algorithm 566

and demonstrated that participants collide less with SC in static dense environment, as 567

they can focus more on the challenges of navigating the robot along the path. We also 568

demonstrated that it is possible to implement a SC method without having to alter the 569

software or hardware of the TR itself. 570

5 User Study 2 571

While the first study was designed to investigate user’s maneuvering performance in 572

dense static environments, it did not include any interaction with people, thus it is 573
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unclear how it might generalize to more typical conference-style situations and “live” 574

remote environments. Moreover, participants navigated segments that were reasonably 575

easy to memorize in a static dense environment, where they could benefit from SC. 576

Towards environments that are more typical for TR operation, we designed a more 577

ecologically valid conference-like environment as shown in Figures 7 and 8 using the 578

same TR and software for Study 2. With this study, we aimed to investigate how user 579

behaviours and their experience changes with a task requires social interaction with SC. 580

Fig 7. View of the experimental setup for user study 2 for presentation. Posters are
blanked to preserve anonymity. The blurred area is associated with another research
project irrelevant to this work.
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5.1 Experimental Setup 581

As the user study 1, we divided our experimental environment into eleven milestones 582

that the user had to follow in the task. Since the experimental setup involves fewer 583

sub-tasks, we only matched segments and milestones in this study. We also placed tape 584

at the level of the sensors between chair/desk legs to ensure that the TR was able to 585
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reliably detect its distance to the chairs and desks. To provide a more realistic 586

conference- or workspace-style setting, we used four actors/actresses in the environment 587

while a participant was performing the tasks. These actors are shown as A1, A2, A3 588

and A4 in the Figure 8. 589

5.2 Participants 590

Twelve participants (9 female), with an average age of 27.6 with standard deviation of 591

4.8, participated our experiment. One participant was left-handed and all participants 592

had never used a TR before. The experiment was approved by the local ethics 593

committee, [2015s0283], and participants provided written informed consent before 594

starting the experiment. 595

5.3 Experimental Design 596

Each of the 12 participants performed the experiment once. We divided the experiment 597

into two sessions, without breaks. In the first session, participant started from M0 and 598

ended at M5, and in the second session they started from M6 and ended at M11, as 599

illustrated in Figure 8. Each of these two sessions used a different SC method SC2, 600

either with or without automatic SC, in counterbalanced order. Participants were 601

informed if SC was turned on or off at the beginning of each session, i.e., at M0 and 602

M6. We again measured time and number of collisions in this study. 603

5.4 Procedure 604

This study involves a user study (Human Subject Research). This research conducted 605

with permission of the Simon Fraser University Research Ethics Board (REB 606

[2015s0283]). All participants were informed by consent forms and their data were 607

analyzed anonymously. 608

After filling out the demographic questionnaire, participants were encouraged to get 609

used to driving the TR until they felt comfortable. After that, the experimenter gave 610

them a simplified diagram of the obstacle course, similar to Figure 8 but without the 611

actor directions, milestones, and TR segments, and a sheet with tasks they had to 612

follow. After participants read the instructions for the tasks on the sheet, the 613

experimenter also verbally explained what participants had to do. In the first study, 614

even though we were not able to identify any significant difference, gamepad slightly 615

decreased task execution time and the number of collisions compared to the keyboard. 616

Thus, we asked participants to use the gamepad in Study 2 to control the TR, as it 617

allowed for continuous SC. Participants wore a headset with a microphone to talk to 618

actors/actresses in the scene. A webcam on top of the desktop screen was used to show 619

the face of the participant to the remote persons (in this case our actors). In other 620

words, all interaction between the participant and actors/actresses throughout the 621

experiment was through the TR system, as in Figure 8. 622

In segment S1, participants started the experiment from the entrance (1) and went 623

to the Registration Desk (2). There was a queue for people to register at the conference, 624

and participants had pass to the left of them and come close to Actor A1, who placed a 625

badge onto the TR. In S2, participants had to navigate the TR through the people in 626

the registration queue in front of the registration desk. Actors were positioned 50 cm 627

away from each other and instructed not to automatically let the TR to go between 628

them, such that participants had to interact with people in the queue. In S3, the TR 629

had to drive between two chair placed at 45°. One actor/actress (A1) sat next to a 630

laptop bag positioned on the floor as an obstacle, while another one (A4) sat on the 631

other chair, in front of a green bag. When A4 was sitting, there was insufficient space 632

October 29, 2020 18/43



for the TR to pass by, so participants had to interact with the actors/actress to either 633

move the bag or ask for A4 to move their feet. In S4, the TR had to enter a “poster 634

presentation area” and participant had to find answers for specific questions about the 635

poster content. As a first task, participant had to find the correct poster, which 636

required the participant to talk with the actors/actress (either A3 or A4). After finding 637

the correct poster, participants had to respond to three questions: to count the number 638

of figures in the results section, to read and write down a part of the sentence, and 639

select a figure that stood out in terms of formatting. After S4, participants have to find 640

the signboard in S5 and find directions to five different locations. For these signs, we 641

used names from a language unfamiliar to participants, which uses Latin letters 642

(Hawaiian). Thus, participants had to ask for places with unfamiliar names. Three of 643

these locations were indicated on the signboard and participants had to ask the student 644

volunteer actor (A1) next to the signboard for directions to two of them. After 645

recording the answers to the questions, participants drove the TR to the square which 646

was designated as an “elevator”, see Figure 8. At the end of S5, we finished data 647

collection for the first SC condition. Without any breaks, we continued the experiment 648

with the second SC condition. Before starting the experiment, subjects were informed if 649

the SC algorithm was turned on or off. 650

When the participants started at S6, they first had to stop by the signboard and 651

again respond to five questions on the task sheet in front of them, for a different set of 652

destinations. They had to, again, fill the questionnaire and ask for directions to rooms 653

and places in the Hawaii Convention Center. Again, two locations required 654

communicating with the student volunteer next to signboard. After the signboard, 655

participants went back to the poster presentation area in S7 and had to answer 656

questions about the second poster. These question forced participants to interact with 657

actor/actress A4. Participants had to write down the author names of the poster, which 658

were not visible to the camera of the TR. They also had to navigate closer to the poster 659

to see small details in the poster, such as the number of colored points in a graph and to 660

count the number of experimental conditions. After S7, participants continued to S8 661

and had to traverse between the same group of chairs as in S3, but in the opposite 662

direction. Similarly, participants had to go through the line of people in segment S9. 663

Again, none of the actors/actresses allowed the TR to pass through the line on their 664

first attempt, such that participants were forced to interact with the actors in the line. 665

At the end of S9, TR were asked to get close to A1’s position such that A1 could 666

retrieve the badge from the TR. At the end, participants drove back to the starting 667

point, S10 and finished the experiment. 668

In the two sessions of the experiment, i.e. session 1 starting from M0 to M5 and 669

session 2 between M6 and M11, we kept tasks very similar to each other. In other 670

words, these session were symmetrical with small changes, i.e., in M0, participant had 671

to take the badge and in M11 gave the badge back to the actor. Also, participant 672

started the experiment with a different SC algorithm than the previous participant. 673

This ensured that our experiment was counterbalanced. 674

After the user study, participants filled a questionnaire about their preferences and 675

insights. These questions were similar to Study 1, except that we omitted the questions 676

around input devices. 677

We again used the video recordings of the Beam GUI to collect time data for each 678

milestone indicated in Figure 8. We also counted the number of collisions in the video 679

recordings. 680

5.5 Results 681

The 2SC Speed Control data was analyzed using repeated measures (RM) ANOVAs for 682

the independent variables, with α = 0.05 in SPSS 24. 683
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5.5.1 Navigation Behavioral Data 684

Completion time was normal after a logarithmic transformation (Shapiro-Wilk test 685

result was W (24) = 0.982, n.s., Skewness = 0.566, Kurtosis = -0.422). The RM ANOVA 686

results showed no significant main effects of SC (F(1,11)=2.492, p=0.143, η2=0.185; 687

with SC M=325.5 seconds, SD=84.2, SEM=24.3, 95% CI [271.95, 379.04] and without 688

SC M=372.8 seconds, SD=106.5, SEM=30.7, 95% CI [305.01, 440.04]. Similarly, the 689

number of collisions was not affected by the SC (F(1,11)=0.647, p=0.438, η2=0.056). 690

This might be related to the overall low number of collisions in study 2 (with SC 691

M=0.333, SD=0.49, SEM=0.14, 95% CI [0.02 0.64] and without SC M=0.5, SD=0.67, 692

SEM=0.19, 95% CI [0.07, 0.92]), likely a consequence of the more open areas compared 693

to the environment in Study 1. Since we observed only a total of 10 collisions in this 694

whole study, we only assessed the average number of collisions and did not analyze these 695

hits in detail. The RM ANOVA results and statistical measures for Study 2 are shown 696

in Table 2 and Figure 16. The detailed milestone analysis is shown in Figure 17. 697

However, even though results were not significantly different, SC reduced the task 698

completion time and number of hits, as shown in Figure 16. 699

5.5.2 Subjective Measurements 700

In the post-experimental questionnaire, participants were asked the preferred driving 701

method, with or without SC. After that, they were asked 7-point Likert scale to 702

evaluate user perceptions for the SC algorithm. 703

5 participant preferred driving with SC, the other 7 participant preferred driving 704

without SC. Participants who preferred SC commented such as “[speed control] prevents 705

me from hitting the obstacles”, “[the TR] was more controlled, and it felt comfortable”, 706

“The method with speed control seemed to give more agency over the control of the 707

robot. With the [standard] speed-control method I found it more difficult to move 708

around the space without hitting objects. The speed-control method also had smoother 709

operation compared to the [standard] method.”, “In my opinion it helps me have better 710

control on my driving” or “it seemed smoother with speed control.” 711

None of the twelve participants thought that it was difficult to drive the TR (1-easy, 712

7-difficult, the average result was 2.8). All twelve participants thought SC improved 713

their performance in terms of task completion time (1-very likely, 7-very unlikely, 714

M=2.6, SD=0.84) and none of them thought that SC worsened their performance in 715

terms of the number of collisions (1-very likely, 7-very unlikely, M=1.2, SD=1.4). 716

Participants also reported that they only felt moderate physical and mental fatigue after 717

the experiment (1-I feel very rested, 7-I feel very tired, averages for physical and mental 718

fatigue of M=4, SD=0.63 and M=4.4, SD=0.49 respectively). 719

Participants who did not prefer SC commented on their preference as follows: “I feel 720

like the SC was going against my intention of wanting to get a closer look at 721

something”, “I felt more free to move. I didn’t feel restricted”, “I feel free to stop, move 722

at my own will and gives me a more relaxed experience”, “it felt more fluid”, “less 723

controls to worry about, especially when coming into this task with little experience 724

using a game controller”, “[without SC] was faster, get things done faster. I could steer 725

around people faster in conference hall” or “made me think I had stumbled whereas I 726

might just have been too close. This raises more question about personal space, but the 727

lack of speed-control felt more organic and also provided an opportunity to learn how 728

far I could go”. None of the participants who preferred the condition without speed 729

control thought that it was difficult to drive the TR (1-easy, 7-difficult, M=2.28, 730

SD=0.89). Only a participant thought that SC was “somewhat unlikely” to have 731

improved their performance in terms of task completion time (1-very likely, 7-very 732

unlikely, M=4.42, SD=1.17) and none of them thought that SC worsened their 733
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performance in terms of number of collisions (1-very likely, 7-very unlikely, M=1.91, 734

SD=1.1). Participants also reported that they only felt moderate physical and mental 735

fatigue after the experiment (1-I feel very rested, 7-I feel very tired, for physical and 736

mental fatigue of M=3.28, SD=1.33 and M=3.71, SD=1.56 respectively). 737

5.6 Study 2 Discussion 738

In the second study, we investigated SC method in a conference-like environment where 739

participant had to communicate with other people within a less dense environment 740

compared to first study, while an automatic SC algorithm could be in effect. 741

Even though the TR slowed down with SC and SC slightly decreased the task 742

completion time and the number of collisions, we were unable to identify significant 743

differences on task completion time and number of collisions. Overall, study 2 did not 744

show a significant improvement in terms of TR navigation behaviour when 745

distance-based automatic SC was added, even though the device speed was reduced and 746

number of collision decreased, thus not supporting H1. However, since subjects were 747

socially interacting with other people, there are too many variables that might have 748

influenced the outcome. Moreover, the open areas in study 2 did not allow us to 749

investigate H2. 750

The observed split between participants who preferred to drive with or without SC 751

suggests that people have different driving preferences [47]. Participants for whom full 752

control, speed, and agency over the TR is important did prefer to have no automatic SC 753

or at least the option to switch it off when desired, especially in low density 754

spaces [16,40]. 755

In the first study, half of the participants had a valid driver’s license. Three of them 756

were driving once or twice a week and one of them was driving every day. Two 757

participants with driver’s licenses had been driving a car once or twice in six months. 758

Also, half of the participants reported that they played car driving games regularly, the 759

other half did not. In the second study, eleven participants had a valid driver’s license. 760

Three of them were were driving everyday, two of them were driving once or twice a 761

week, two of them were driving once or twice a month, three of them were driving once 762

or twice in six months, and one of them was driving once or twice a year. Two 763

participants reported that they do play car driving games and the rest reported that 764

they do not. Interestingly, all the participants who preferred to drive the TR without 765

automatic SC had a valid drivers’ license. Thus, one potential explanation of our results 766

is that real-world car driving knowledge might affect participants desire for SC. 767

However, there are other potential explanations, such as game car driving experience, 768

cultural differences, or the influence of social interaction on driving, which could be 769

investigated in future work. 770

One possible explanation of the results is the hardware design of the distance sensors. 771

In our TR setup, we used sensors placed approximately 30 cm above the ground and 772

they were measuring distance at this height. Objects (much) lower and higher than this 773

height were not detected. For instance, while it was possible to measure the distance 774

between the TR and the leg of an actor, the shoe of the actor was not detected. Yet, a 775

(technically naive) end-user would likely expect the system to detect objects on the floor. 776

When such obstacles were not detected, user had to manually control the TR (even 777

though SC was enabled), which might have increased the frustration of the users and 778

which could explain the outcome. We discuss the limitations of the current setup 779

further below. We also speculate that different preferred social distances across cultures 780

might have affected our results in here [48]. Our subjects had a culturally very diverse 781

background, from all around the world. In some cultures, people prefer to get closer to 782

each other to communicate. Thus, the SC algorithm could have negatively affected 783

communication behaviours for different participants. We did not collect any data to 784

October 29, 2020 21/43



assess this effect, but as this is also a potential explanation for our results it warrants 785

further investigation.Another potential explanation of the results are environmental 786

factors, such as noise, which can be found also during regular TR navigation. In the 787

first study, subjects had to focus only on driving with visual feedback. In the second 788

study, subjects had to interact with people through spoken communication. The noise 789

in the environment or the incoming voice sound level might have had an effect on the 790

users’ preference to come closer to the actors, which might also have affected the results 791

of our study in terms of preference for or against SC. 792

6 General Discussion 793

In this work, we focused on changes in navigation user behaviors as an effect of using a 794

speed control method. As a basis for this work, we implemented a SC method that uses 795

the distance to objects in front of the TR to modulate the speed for dense environments, 796

without modifications to the existing Beam+ TR nor its GUI. We then conducted a 797

first user study in a static dense environment and demonstrated that such a SC method 798

can improve user navigation behaviours in terms of fewer collisions, especially in tight 799

sections with high curvatures in static dense environments. With the SC method 800

participants felt safer to drive the TR and perceived an increased the ease of use. This 801

result also supports our hypothesis H1, i.e., that distance-based SC improves TR 802

navigation behaviour. Even though we did not acquire data nor designed our system to 803

reduce the number of collision at the back of the TR, we found that collisions of the 804

back of the robot decreased with the SC method. We believe that this result supports 805

our H2, in that SC increased users’ spatial presence in the maze. Since subjects were 806

more able to pay attention to the environment, they also did not hit objects with the 807

back of the TR in the maze. These two hypothesis also supports the findings of 808

previous work on SC [40,49]. 809

In our second study we evaluated TR navigation behaviour with SC in an 810

environment similar to an academic conference . In contrast to the first one, this study 811

had larger open areas and subjects had to interact with real humans. SC decreased the 812

task completion time and number of collision, but since the number of collisions was too 813

low and we were not able to measure an effect for time, SC did not improve TR 814

navigation behaviour, so our H1 was not fully supported. Moreover, the large open 815

areas in Study 2 did not allow us to further investigate our H2 on spatial navigation. 816

With Study 1, we tested a distance-based SC method in static dense 817

environments and showed that it is beneficial for optimizing navigation 818

behaviours in such settings. All the subjects preferred SC in the first study, where 819

they did not have to interact with people. Study 2 revealed approximately binary 820

responses with respect to the sense of agency that users felt with respect to the two 821

different SC methods. While about half of the participants preferred automatic SC 822

because it allowed for smoother and safer navigation, the remainder preferred to have 823

full control over the speed as this gave them more agency and allowed for faster travel 824

even when close to obstacles. This result also supports the finding of previous studies 825

on individual driving preferences with vehicles [47]. While previous SC work 826

highlighted the importance and the application of SC [16,40,49], our study 827

revealed that always-on SC does not improve TR navigation behaviour 828

across all environments, such as when users had to interact socially. Still, 829

the automatic SC method implemented in this work improved TR navigation behaviour 830

in static dense environments for all users without increasing the task execution time 831

compared to previous methods [17,18]. 832

Through our interviews, we learned that agency and control can play an important 833

role in whether people prefer automatic SC or not. This outcome of Study 2 show 834
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similarity with other research in the field on TR navigation. Basu et al. [50] showed 835

that participants’ vehicle driving styles vary, yet all their participants preferred driving 836

styles safer than to their own. This motivates us to believe that driving style affects 837

user experience and the participants’ desire for SC. Based on previous work [17], we 838

speculate that adding automatic SC would reduce the user’s perceived cognitive load 839

when the TR comes closer to objects. In such situations the user does not have to 840

divide their attention between the steering and the speed of the TR. Automatic SC 841

frees up the mental resources of the user, as they do not have to focus on the speed of 842

the TR and thus can focus on better navigation [17, 18]. Such limits to mental capacity 843

have also been observed in other fields. For example, in pedestrian traffic research, it 844

has been shown that there is a relation between walking speed, traffic density and the 845

capacity of the environment [51]. When there are physical limitations in the 846

environment, such as counter flow [52,53] or obstacles, including stairs [54], human 847

walking speed decreases in that particular environment to navigate more safely. 848

Study 2 results highlight the importance of giving users control, so they 849

can chose when they would like to have SC assistance or not, which 850

presents guidance for the design of future TR systems with 851

automation-on-demand [51]. Other TR research on user driving skills also supports 852

our conclusion; low-skill users benefit more from a TR assistance system designed to 853

help users to avoid hitting obstacles than skilled users, i.e., the assistance system was 854

not uniformly helpful to all user levels [18]. In the automotive domain, automatic SC 855

assistance has been studied and results show that drivers prefer to take control of such 856

systems in situations when the driver sees that the system is taking an action that is 857

not desired [55, 56, 56] Users could activate such features as desired or systems could be 858

designed to detect the type of environment and adjust the degree of automation. 859

The finding from subjective results also suggest that user preference 860

needs to be taken into account when designing assistive features on TRs – 861

even though adding automatic SC showed a clear benefit by reducing collisions in Study 862

1, this did not generalize into an overall preference for it in Study 2 which involved 863

social interaction and used a more naturalistic conference-style setting, which mixes 864

tight passages with open areas, which were explored in previous work [16,40]. Social 865

interaction is an important aspect of TRs, but most work on assistance algorithms, such 866

as [16–18,40,43,57–61], did not test their algorithms in realistic environment with social 867

interaction. User preference on TR SC can change when users interact 868

socially with other people in realistic environment. It is also likely that because 869

participants were in a more realistic environment in Study 2 and they interacted socially, 870

a larger variety of factors, compared to Study 1, may have influenced their thought 871

processes when driving . When in a natural environment, users of TRs must consider 872

obstacles in addition to their desired interpersonal distances from others, which may 873

change depending on the people who are around. Obstacles and people move around, so 874

the dynamic nature of the environment could further affect people’s preferences and the 875

usability of the design. There are likely a host of ways that algorithms and systems 876

could be designed beyond what we have discussed here. Regardless of the specific design 877

solution, researchers and designers will need to consider such factors. 878

As stated above, we do not focus on the path-finding aspects for TR control. In our 879

experiments, when the user lost their way, the experimenter helped participant to 880

navigate back to the maze. This only occurred when the subject were in an open space, 881

such as between M5-M6. In such instances, the TR could not hit or touch any objects. 882

We also manually deleted all the data for intervals where the the user was trying to go 883

back to the maze. This helped us to only focus our analysis on how collisions occurred 884

in the dense environments. Further, we did not assess our SC results for certain steering 885

conditions, such as in curved segments. These topics are already well-studied [62–65]. In 886
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this work, we focused our analysis on different segments and milestones to investigate if 887

automatic SC shows any detrimental effects in various situations that could be found in 888

social gatherings. Yet we were unable to identify any such negative effects. 889

Several measures of navigation performance had been previously used to assess the 890

performance of machine-learning-based methods for social navigation behaviours in 891

robots [66–72]. However, these studies focused on algorithms that automatically plan a 892

socially acceptable path without involvement of a human operator. These approaches 893

build on Proxemics theory [73] and use variables, such as distances between robot and 894

person or path and trajectory length. In dense environments the path is so constrained, 895

that path length(s) are not a very good criterion of assessment for human-driven TR 896

navigation. Similarly, in our study tasks required TRs to get close to actors and poster 897

boards. Thus, we did not investigate such variables in our studies. Navigation through 898

narrow paths and dense environments was also investigated within robotics, 899

e.g., [74–76], but this research again did not involve human operators nor TRs. 900

The results of our work also suggest that the evaluated SC algorithm 901

can be used for static dense environments with narrow paths. When the 902

user goes into more open environments or interact with people, the 903

activation of the algorithm should be left to the user. For instance, if there is a 904

single object close to the side of the TR in a open space, or a single person in an open 905

area, our algorithm would decrease the speed of the device automatically, which might 906

not lead to the ideal driving experience. As future studies, additional features, different 907

algorithms such as Conventional Neural Networks [77] or automatic way-point 908

approaches can be used to investigate user experience in such cases. Furthermore, as 909

discussed in study 2, since this distance sensors used in this study work at a horizontal 910

level, i.e., they only measure the distance at their installation height, objects out of view, 911

i.e., sufficiently below or above this height, will not be detected, which might increase 912

user frustration as they may not understand why the device did not “see” an obstacle. 913

7 Limitations 914

Even though our system was designed to investigate TR navigation in dense 915

environments, our prototype still suffers from software and hardware limitations. Here, 916

we acknowledge these limitation. 917

7.1 Sensor Ring & Distance measurement 918

In this study we used the 6 forward-facing ultrasound sensors attached to the TR based 919

on existing hardware [38]. Yet, an increase in this number of sensors might also increase 920

the accuracy of data acquisition. However, since we used an already existing setup, we 921

were limited to 6 to achieve a sufficiently high update rate. Still, considering the size of 922

the sensors and their view overlap, 6 seems to be a reasonable number. Also, the update 923

rate of the system was dependent on several variables, such as the the speed of wireless 924

connection and the processing rate of the computing hardware used in this experiment. 925

While additional computing power might help, this will incur other issues, such as a 926

need for more battery power. Although ultrasonic sensor rings have been used in 927

previous TR studies for obstacle avoidance [59,60] and navigation [58], the 928

above-mentioned issue with not being able to detect the actors’ feet also points out that 929

a simple, horizontal ring of ultrasound sensors might not be sufficient for collision 930

avoidance nor automatic SC on a TR designed for conference-like environments. 931

To ensure that the distance sensors reliably detected all obstacles, we used duct tape 932

to cover all open spaces, such as the space between the legs of chairs and open spaces 933

between boxes in the first user study. We also taped all surfaces that were not reliably 934
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detected by the range sensors, such as metal plates or small gaps in the “walls”. 935

However, a more precise system with a higher refresh rate, such as a LiDAR sensor or a 936

millimeter cloud radar, could improve the rate and quality of the distance data 937

acquisition, which then would also increase the performance of the SC algorithm. For 938

instance, the distance we measured was relative to the TR robot speed. So it was not 939

possible to measure absolute TR position/speed and to use this to improve the SC 940

algorithm. Yet, the findings of our first study show that adding SC to a TR can 941

improve the navigation behaviour and experience, especially in dense static 942

environments, such as sections of a factory floor, where there are few people. In our 943

second study, our results suggest that the SC algorithm could decrease task completion 944

time and number of collisions, but we were unable to identify corresponding significant 945

differences since subjects performed tasks with social interaction in a realistic 946

environment. Overall, we believe that a SC method can be useful for TR applications. 947

7.2 Speed Control Algorithm 948

It is not feasible to replicate all potential social and static scenarios and study various 949

UIs, GUIs, and SC algorithms. We designed a SC algorithm that controls the speed of 950

the device specified through the GUI and assessed TR navigation behaviour in a static 951

and a social environment to identify when automatic SC improves the user experience, 952

so that we do not need to use additional feedback to the user. For instance, notifying 953

the user about an upcoming obstacle or making recommendations would not work well 954

in the scenario for user Study 1, since all objects are close to the TR. This would lead 955

to constant notifications, which would diminish the effect of the feedback and could be 956

frustrating for participants. The movement speed of the TR is already visible through 957

the optical flow in the camera feed: drivers can easily see how fast or slow the robot is 958

moving by looking at the camera views. As such, we did not provide any additional 959

feedback mechanism beyond the existing camera views of the remote environment. 960

Considering such limitations, we implemented an unobtrusive TR SC algorithm and 961

evaluated navigation behaviour in dense environments. Within the given software and 962

hardware limitations, we were unable to identify or implement a notably better SC 963

algorithm. Given that we have shown the benefits of a SC algorithm with Study 1, we 964

consider a detailed comparison of the efficiency of different SC algorithms in various 965

environments with different UIs to be out of the scope of this manuscript. 966

7.3 Telepresence robot 967

The TR we used in this work is designed for indoor environments, which is the reason 968

why we limited it to a human’s walking speed and designed the SC algorithm 969

correspondingly. This also means that the outcomes of this work might need to be 970

further investigated for outdoor scenarios, including, e.g., urban search and rescue 971

robotic applications. While the top speed for our TR is in the range of speeds used in 972

previous studies, such as [45,53,78,79], we acknowledge that individual walking speed 973

can vary with age, gender, and weight [79, 80] and we did not account for this variation 974

in individual speeds in our study. 975

Similarly, the TR we used is a commercially available teleconference product, which 976

was used in previous work [1, 5, 9]. Other TR systems with additional features, such as 977

automatically adjusting to the user’s head height [81], or with stereo displays with 978

higher quality video transmission rate [82] exist. Moreover, unlike other telepresence 979

work [43,57,61], we controlled the speed of the TR only through the user interface of 980

the system, but not directly in the TR. In contrast, previous work that had full access 981

to all components of the TR and where the feedback loop was running on a 982
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microcontroller, was able to use PID controllers [43,57]. We believe that our system 983

might perform even better with such a hardware platform. 984

7.4 Participants 985

We also collected data for 12 subjects in both studies. Although we used only a limited 986

number of participants, we found clear differences, as also illustrated through overall 987

high effect sizes (0.63 to 0.77). Even though the participants were different in both 988

studies, a larger sample size could increase the depth of insights on the SC method in 989

TR, especially for user study 2. 990

We also collected data from university students who had no previous experience with 991

navigating a TR. Even though subjects were allowed to practice both with and without 992

SC until they felt confident, a longer learning period or an expert user might experience 993

different results [18]. Also, we had predominantly female participants in our studies, 994

which is not representative of all target contexts. 995

7.5 Experimental Environment 996

In both studies actors and obstacles were fixed. In a dynamic environment, such as a 997

conference or a bustling workplace, people move around, also when they interact with 998

the TR. Since it is difficult to replicate a real environment that constantly changes 999

while maintaining the repeatability of the experiment, we decided to focus on static 1000

environments and obstacles. In a conference or work environment, the audio noise level 1001

would also be much higher than in our experiments. 1002

7.6 GUI 1003

In study 1, subjects did not need to interact socially, and pilot participants preferred a 1004

minimized forward-facing camera view. Thus, we increased the size of the downward 1005

camera view to its’ maximum size for this study. Since the Beam GUI shows both views 1006

in a single window and does not allow one to split the camera views into different 1007

windows, that enlargement meant that the forward view automatically became as small 1008

as possible (350 pixel x 260 pixel or 11 cm x 8 cm). Still, this size was sufficient to 1009

enable participants to see where they were driving in free space and it also helped them 1010

to pass under the ladder (part of the obstacle course). In the second study, we changed 1011

the size of the both views to allow participants to experience reasonable views for both 1012

navigation in the environment and social interactions. Thus we gave similar amount of 1013

space to both camera views, 19 x 14.5 cm or 620 pixel x 465 pixel for the forward-facing 1014

camera and 18.5 x 14 cm or 595 pixel x 445 pixel for the downward-facing one. This is 1015

also shown in Figure 2. Thus, while we were carefully set the size of the camera views, 1016

these sizes (and the much larger than normal forward-facing camera view) should be 1017

taken into account when considering our results. To avoid a potential confound, we did 1018

not allow participants to individually vary the size of the camera views. These 1019

dimensions clearly depend on the size of the computer screen, which is another 1020

limitation of our work. 1021

8 Conclusion and Future Work 1022

In this paper, we assessed an automatic speed control method designed for telepresence 1023

robot navigation in dense environments. Our results showed that speed control can 1024

significantly improve TR navigation behaviour during telepresence robot navigation in 1025

static dense environments. Moreover, we also identified that in environments that 1026
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require social interaction, the benefits of automatic speed control are reduced. Our 1027

findings also suggest that when the user had to interact within a social environment, 1028

some users could feel limited by automatic speed control, but for others the use of a 1029

speed control algorithm decreased cognitive load and improved spatial presence. Thus, 1030

we suggest that users should have an on/off option for automatic speed control 1031

algorithms. Moreover, researchers should test their developed algorithms with tasks 1032

that require social interaction. Researchers and designers of navigation and driving 1033

systems for telepresence robots should consider the design features we presented and 1034

explore how user preference, driving experience, environment, and desires for certain 1035

interpersonal distances from others can be accommodated in such systems. 1036

In the future, we are planing to extend our studies to more complicated 1037

environments, such as where people are walking or passing in front of the telepresence 1038

robot as well as outdoor environments, where spaces may have differing types of 1039

obstacles, or uneven terrain with additional metrics, such as the NASA TLX. Another 1040

environment to study is areas where more people are present than what we have already 1041

studied, with various environmental conditions, such as different levels of noise. 1042

Moreover, we want to further investigate how previous driving experience affects 1043

telepresence robot navigation with a speed control algorithm. Finally, we plan to 1044

explore how driving with automatic speed control follows the steering law. 1045

Supporting information 1046

Table 1. Fisher’s test results for study 1

Dependent
Variable

Speed Control Input Device
Input Device

x
Speed Control

Task Completion
Time

F(1,11)=4.126, p=0.067
η2 = 0.27

F(1,11)=0.647, p=0.438
η2 = 0.056

F(11,1)=0.201, p=0.66
η2 = 0.018

Total Number
of

Collisions

F(1,11)=36.75, p<0.001
η2 = 0.77

F(1,11)=1.986, p=0.186
η2 = 0.153

F(1,11)=0.011, p=0.92
η2 = 0.001

Front Touch
F(1,11)=21.78, p<0.001

η2 = 0.66
F(1,11)=0.152, p=0.698

η2 = 0.014
F(1,11)=0.31, p=0.594

η2 = 0.27

Back Touch
F(1,11)=3.160, p=0.103,

η2 = 0.233
F(1,11)=2.708, p=0.128,

η2 = 0.198
F(1,11)=0.062, p=0.807,

η2 = 0.006

Front Hit
F(1,11)=23.32, p<0.001

η2 = 0.014
F(1,11)=0.244, p=0.631,

η2 = 0.022
F(1,11)=1.15, p=0.25,

η2 = 0.118

Back Hit
F(1,11)=19.062,p<0.001

η2 = 0.634
F(1,11)=2.518, p=0.141,

η2 = 0.186
F(1,11)=0.012, p=0.913,

η2 = 0.001

Table 2. Study 2 ANOVA results and statistical measures
Dependent
Variable

Statistical Analysis Speed Control ON Speed Control OFF

Task Completion
Time

F(1,11)=2.492, p=0.143
η2 = 0.185

M= 325.5, SD=84.2, SEM= 30.7,
95% CI [271.95, 379.04]

M=372.8, SD=106.5, SEM=30.7,
95% CI [305.01, 440.04]

Total Number
of

Collisions

F(1,11)=0.647, p=0.438
η2=0.056

M=0.333, SD=0.49, SEM=0.14,
95% CI [0.02 0.64]

M=0.5, SD=0.67, SEM=0.19,
95% CI [0.07, 0.92]
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8.1 Figures 1047

(a) (b)

(c) (d)

(e) (f)

Fig 9. Task completion time means and standard error of means for (a) input device,
(b) speed control, (c) input device and speed control interaction. Task completion time
means and 95% confidence intervals for (d) input device, (e) speed control, (f) input
device and speed control interaction.
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Fig 10. Means and standard error of means for average number of collisions for (a)
input device, (b) speed control, (c) input device and speed control interaction. Means
and 95% confidence intervals for number of collisions for (d) input device, (e) speed
control, (f) input device and speed control interaction.
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(c)

(d) (e)

(f)

Fig 11. Means and standard error of means for number of touches from the front side
for (a) input device, (b) speed control, (c) input device and speed control interaction.
Means and 95% confidence intervals for number of touches from the front side for (d)
input device, (e) speed control, (f) input device and speed control interaction.
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(d) (e)

(f)

Fig 12. Means and standard error of means for number of touches from the back side
for (a) input device, (b) speed control, (c) input device and speed control interaction.
Means and 95% confidence intervals for number of touches from the back side for (d)
input device, (e) speed control, (f) input device and speed control interaction.
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(f)

Fig 13. Average number of hits from the front side and standard error of means for (a)
input device, (b) speed control, (c) input device and speed control interaction. Means
and %95 confidence intervals for number of hits from the front side for (d) input device,
(e) speed control, (f) input device and speed control interaction.
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(d) (e)

(f)

Fig 14. Means and standard error of means for number of hits from the front side for
(a) input device, (b) speed control, (c) input device and speed control interaction.
Means and %95 confidence intervals for number of hits from the front side for (d) input
device, (e) speed control, (f) input device and speed control interaction.
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(a)

(b)

(c)

(d)

Fig 15. Detailed milestone analysis for average number of (a) collisions, (b) front
touch, (c) back touch and (d) back hit. Detailed time and front hit analysis per
milestone is shown in Figure 6.
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(a) (b) (c) (d)

Fig 16. Study 2 SC task completion time (a) means and standard error of means, and
(b) means and confidence intervals. Study 2 SC average number of collision for (c)
means and standard error of means, and (d) means and confidence intervals.

(a)

(b)

Fig 17. Study 2 detailed milestone analysis for (a) task completion time and (b)
average number of collision.
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