

Prof. Dr. Peter Becker Fachbereich Informatik

Lösung zur Klausur Mathematische Grundlagen

Klausur Sommersemester 2017

29. September 2017, 13:00-14:30 Uhr

Name:		Vorname:						
Matrikelnr.:	Unterschrift:							
Aufgabe	1	2	3	4	5	6	Summe	
Punkte	10	10	10	12	8	10	60	
erreicht								
 Mit 24 Pun Es sind kein				tanden, ab	48 Punkt	en erhalte	en Sie eine 1.	
• Sie müssen								
• Tipp: Scha				oen an.				
iel Erfolg!								
ici Erioig.								
emerkungen:								
			Not	e				
			1,00					
. Prüfer (Prof.	Dr. Peter	Becker)		2. Prü	fer (Prof. 1	Dr. Alexa	nder Asteroti	

Aufgabe 1 (2.5+2.5+2.5+2.5=10 Punkte)

Zeigen Sie:

- (a) $((p \to q) \land \neg q) \to \neg p$ ist eine Tautologie.
- (b) $\neg r \land p \land \neg (q \rightarrow r)$ ist erfüllbar.

(c)

$$(p_1 \lor p_2 \lor \ldots \lor p_n) \to (q_1 \lor q_2 \lor \ldots \lor q_m)$$

$$\equiv (p_1 \to (q_1 \lor \ldots \lor q_m)) \land (p_2 \to (q_1 \lor \ldots \lor q_m)) \land \ldots \land (p_n \to (q_1 \lor \ldots \lor q_m))$$

(d) $\{\alpha_1, \ldots, \alpha_n\} \models \beta_1 \vee \beta_2$ gilt genau dann, wenn $\{\alpha_1, \ldots, \alpha_n, \neg \beta_1, \neg \beta_2\}$ unerfüllbar ist.

Lösung:

(a) Wir beweisen dies durch Umformung.

$$((p \to q) \land \neg q) \to \neg p \equiv ((\neg p \lor q) \land \neg q) \to \neg p$$

$$\equiv ((\neg p \land \neg q) \lor (q \land \neg q)) \to \neg p$$

$$\equiv ((\neg p \land \neg q) \lor 0) \to \neg p$$

$$\equiv (\neg p \land \neg q) \to \neg p$$

$$\equiv \neg (\neg p \land \neg q) \lor \neg p$$

$$\equiv p \lor q \lor \neg p$$

$$\equiv q \lor 1$$

$$\equiv 1$$

(b) Wir wählen die Belegung $\mathcal{I}(p)=1, \mathcal{I}(q)=1, \mathcal{I}(r)=0$. Damit gilt $\mathcal{I}^*(q\to r)=0$ und somit $\mathcal{I}^*(\neg(q\to r))=1$. Außerdem: $\mathcal{I}^*(\neg r)=1$ und $\mathcal{I}^*(p)=1$ und somit

$$\mathcal{I}^*(\neg r \land p \land \neg(q \to r)) = 1$$

Alternativ hätte man auch eine Wahrheitstabelle aufstellen und darauf verweisen können, dass in der Ergebnisspalte eine 1 steht.

(c) Beweis durch Umformung.

$$(p_1 \lor p_2 \lor \ldots \lor p_n) \to (q_1 \lor q_2 \lor \ldots \lor q_m)$$

$$\equiv \neg (p_1 \lor p_2 \lor \ldots \lor p_n) \lor (q_1 \lor q_2 \lor \ldots \lor q_m)$$

$$\equiv (\neg p_1 \land \neg p_2 \land \ldots \land \neg p_n) \lor (q_1 \lor q_2 \lor \ldots \lor q_m)$$

$$\equiv (\neg p_1 \lor q_1 \lor q_2 \lor \ldots \lor q_m) \land (\neg p_2 \lor q_1 \lor q_2 \lor \ldots \lor q_m) \land \ldots \land (\neg p_n \lor q_1 \lor q_2 \lor \ldots \lor q_m)$$

$$\equiv (p_1 \to (q_1 \lor q_2 \lor \ldots \lor q_m)) \land (p_2 \to (q_1 \lor q_2 \lor \ldots \lor q_m)) \land \ldots \land (p_n \to (q_1 \lor q_2 \lor \ldots \lor q_m))$$

(d) Wir wenden Satz 2.13 an. Nach diesem Satz gilt $\{\alpha_1, \ldots, \alpha_n\} \models \beta_1 \vee \beta_2$ genau dann, wenn $\{\alpha_1, \ldots, \alpha_n, \neg(\beta_1 \vee \beta_2)\}$ unerfüllbar ist. Jetzt formen wir um:

$$\{\alpha_1, \dots, \alpha_n, \neg(\beta_1 \vee \beta_2)\}$$
 ist unerfüllbar gdw. $\{\alpha_1, \dots, \alpha_n, \neg\beta_1 \wedge \neg\beta_2)\}$ ist unerfüllbar gdw. $\{\alpha_1, \dots, \alpha_n, \neg\beta_1, \neg\beta_2)\}$ ist unerfüllbar

Aufgabe 2 (3+7=10 Punkte)

(a) Überführen Sie die Formel

$$(p \lor q \lor r) \to (s \to t)$$

in konjunktive Normalform und geben Sie die Klauselmenge an.

(b) Gegeben sind die folgenden Klauseln:

$$K_1 = \{ \neg a, \neg b, c \}$$

$$K_2 = \{ \neg c, d \}$$

$$K_3 = \{ a, d \}$$

$$K_4 = \{ \neg d \}$$

Zeige Sie mithilfe der Resolution: $\{K_1, \ldots, K_4\} \models a \land \neg b$

Lösung:

(a)

$$\begin{array}{ccc} (p \vee q \vee r) \rightarrow (s \rightarrow t) & \equiv & (p \vee q \vee r) \rightarrow (\neg s \vee t) \\ & \equiv & \neg (p \vee q \vee r) \vee \neg s \vee t \\ & \equiv & (\neg p \wedge \neg q \wedge \neg r) \vee \neg s \vee t \\ & \equiv & (\neg p \vee \neg s \vee t) \wedge (\neg q \vee \neg s \vee t) \wedge (\neg r \vee \neg s \vee t) \end{array}$$

Klauselmenge: $\{\{\neg p, \neg s, t\}, \{\neg q, \neg s, t\}, \{\neg r, \neg s, t\}\}$

(b) Wir negieren die Hypothese $a \land \neg b$:

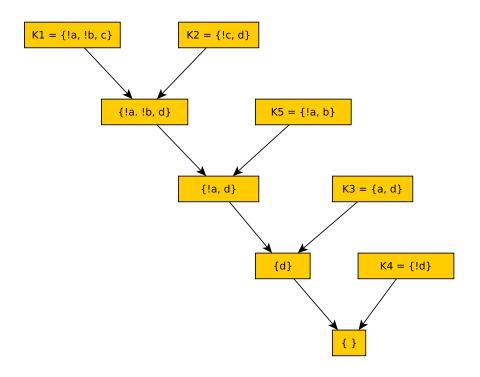
$$\neg(a \land \neg b) \equiv \neg a \lor b$$

Damit entsteht als weitere Klausel: $K_5 := \{ \neg a, b \}.$

Mit Resolution ergibt sich:

$$K_6 := \operatorname{Res}(K_1, K_2) = \{ \neg a, \neg b, d \}$$

 $K_7 := \operatorname{Res}(K_6, K_5) = \{ \neg a, d \}$
 $K_8 := \operatorname{Res}(K_7, K_3) = \{ d \}$
 $K_9 := \operatorname{Res}(K_8, K_4) = \diamond$



Aufgabe 3 (2.5+2.5+2.5+2.5=10 Punkte)

Gegeben sei die prädikatenlogischen Belegung mit dem Universium

$$U = \{a, b, c\}$$

und

$$P = \{a, b\}$$

$$Q = \{b, c\}$$

für die einstelligen Prädikate P und Q.

Sind die beiden folgenden Formeln wahr oder falsch (mit Begründung):

- (a) $(\exists x (Q(x) \to \neg P(x)))$
- (b) $(\forall y (\neg P(y) \lor \neg Q(y)))$

Formulieren Sie in strenger prädikatenlogischer Syntax die folgenden Sachverhalte:

- (c) P und Q haben ein gemeinsames Element.
- (d) Wenn P leer ist, dann enthält Q alle Elemente (des Universums).

Lösung:

$$\mathcal{I}^*(\exists x (Q(x) \to \neg P(x))) = \max\{\mathcal{I}^*(Q(a) \to \neg P(a)), \mathcal{I}^*(Q(b) \to \neg P(b)), \mathcal{I}^*(Q(c) \to \neg P(c))\}$$

$$= \max\{\mathcal{I}^*(0 \to 0), \mathcal{I}^*(1 \to 0), \mathcal{I}^*(1 \to 1)\}$$

$$= \max\{1, 0, 1\}$$

$$= 1$$

(b)

$$\mathcal{I}^*(\forall y(\neg P(y) \lor \neg Q(y))) = \min\{\mathcal{I}^*(\neg P(a) \lor \neg Q(a)), \mathcal{I}^*(\neg P(b) \lor \neg Q(b)), \mathcal{I}^*(\neg P(c) \lor \neg Q(c))\}$$

$$= \min\{\mathcal{I}^*(0 \lor 1), \mathcal{I}^*(0 \lor 0), \mathcal{I}^*(1 \lor 0)\}$$

$$= \min\{1, 0, 1\}$$

$$= 0$$

- (c) $(\exists x (P(x) \land Q(x)))$
- (d) $(\forall x (\neg P(x))) \rightarrow (\forall x Q(x))$

Aufgabe 4 (6+6=12 Punkte)

(a) Zeigen Sie mittels vollständiger Induktion:

$$\forall n \in \mathbb{N} : \sum_{k=1}^{2n-1} (-1)^{k-1} k^2 = n(2n-1)$$

- (b) Die Menge M ist durch die folgenden Regeln definiert:
 - (i) $3 \in M$ und $5 \in M$
 - (ii) Gilt $x, y \in M$, dann gilt auch $17x + 22y \in M$.
 - (iii) M enthält genau die Elemente, die durch die Regeln (i) und (ii) gebildet werden können.

Zeigen Sie: Alle Elemente von M sind ungerade.

Lösung:

(a) n = 1:

$$\sum_{k=1}^{2n-1} (-1)^{k-1} k^2 = \sum_{k=1}^{1} (-1)^{k-1} k^2 = (-1)^{1-1} 1^2 = 1 = 1 \cdot (2 \cdot 1 - 1) = n(2n-1)$$

 $n \rightarrow n+1$:

$$\sum_{k=1}^{2(n+1)-1} (-1)^{k-1} k^2 = \sum_{k=1}^{2n+1} (-1)^{k-1} k^2$$

$$= (-1)^{2n-1} (2n)^2 + (-1)^{2n} (2n+1)^2 + \sum_{k=1}^{2n-1} (-1)^{k-1} k^2$$

$$\stackrel{I.V.}{=} -(2n)^2 + (2n+1)^2 + n(2n-1)$$

$$= -4n^2 + 4n^2 + 4n + 1 + n(2n-1)$$

$$= 4n + 1 + 2n^2 - n$$

$$= 2n^2 + 3n + 1$$

$$= (n+1)(2n+1)$$

$$= (n+1)(2(n+1) - 1)$$

(b) Es gilt:

$$x$$
 ist ungerade \Leftrightarrow $\exists k \in \mathbb{N} : x = 2k - 1$

Induktionsanfang: Offensichtlich sind $3=2\cdot 2-1\in M$ und auch $5=2\cdot 3-1\in M$ ungerade Zahlen.

Induktionsschritt: Nach I.V. gilt, dass x und y ungerade Zahlen sind. Also existieren $k, m \in \mathbb{N}$ mit:

$$x = 2k - 1$$
$$y = 2m - 1$$

Damit ergibt sich:

$$17x + 22y = 17(2k - 1) + 22(2m - 1)$$

$$= 34k - 17 + 44m - 22$$

$$= 34k + 44m - 38 - 1$$

$$= 2(17k + 22m - 19) - 1$$

Für $l = 17k + 22m - 19 \in \mathbb{N}$ gilt somit:

$$17x + 22y = 2l - 1$$

Also ist 17x + 22y ungerade.

Aufgabe 5 (2+2+4=8 Punkte)

Sind die folgenden Relationen R_i , i=1,2,3 partielle Ordnungen auf der Grundmenge N? Begründen Sie jeweils Ihre Antwort.

- (a) $R_1 = \{(n, m) | n 1 \le m\}$
- (b) $R_2 = \{(n,m)|n+1 \le m\}$
- (c) $R_3 = \{(n, m) | (n \text{ und } m \text{ sind entweder beide gerade oder beide ungerade}) \text{ und } n \leq m \}$

Lösung:

(a) R_1 ist keine partielle Ordnung.

Begründung: $1-1=0 \le 2$, also $(1,2) \in R_1$. $2-1=1 \le 1$, also $(2,1) \in R_2$. Damit ist R_1 nicht antisymmetrisch.

(b) R_2 ist keine partielle Ordnung.

Begründung: Für $n \in \mathbb{N}$ gilt: $n+1 \nleq n$ und somit $(n,n) \notin R_2$. Also ist R_2 nicht reflexiv.

(c) R_3 ist eine partielle Ordnung.

Reflexivität: Für alle $n \in \mathbb{N}$ gilt: $n \leq n$. Für ein Paar (n, n) sind außerdem stets beide Komponenten entweder gerade oder ungerade, da sie ja gleich sind. Damit folgt: $(n, n) \in R_3$ für alle $n \in \mathbb{N}$. Somit ist R_3 reflexiv.

Antisymmetrie: Sei $(n, m) \in R_3$ und $(m, n) \in R_3$. Daraus folgt: $n \leq m$ und $m \leq n$ und damit n = m. Also ist R_3 antisymmetrisch.

Transitivität: Es gelte $(k, m) \in R_3$ und $(m, n) \in R_3$. Daraus folgt: $k \leq m$ und $m \leq n$ und somit $k \leq n$.

Wegen $(k, m) \in R_3$ gilt: Entweder sind k und m beide gerade oder beide ungerade. Wenn beide gerade sind, muss wegen $(m, n) \in R_3$ auch n gerade sein. Damit folgt dann insgesamt $(k, n) \in R_3$. Analog folgt, dass n ungerade ist, wenn k ungerade ist. Somit gilt für diesen Fall dann auch $(k, n) \in R_3$. Also ist R_3 transitiv.

Aufgabe 6 (4+6=10 Punkte)

(a) Sei $f: M \to N, A, B \subseteq M$. Zeigen Sie:

$$f(A \cap B) \subseteq f(A) \cap f(B)$$

(b) Es sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} 2x + 1 & \text{falls } x < 2\\ 3x - 1 & \text{falls } x \ge 2 \end{cases}$$

Zeigen Sie, dass f bijektiv ist.

Lösung:

(a)

$$y \in f(A_1 \cap A_2) \implies \exists x : x \in A_1 \cap A_2 \wedge f(x) = y$$

$$\Rightarrow \exists x : x \in A_1 \wedge x \in A_2 \wedge f(x) = y$$

$$\Rightarrow \exists x : (x \in A_1 \wedge f(x) = y) \wedge (x \in A_2 \wedge f(x) = y)$$

$$\Rightarrow (\exists x : x \in A_1 \wedge f(x) = y) \wedge (\exists x : x \in A_2 \wedge f(x) = y)$$

$$\Rightarrow y \in f(A_1) \wedge y \in f(A_2)$$

$$\Rightarrow y \in f(A_1) \cap f(A_2)$$

(b) Die Funktion f ist bijektiv genau dann, wenn f surjektiv und injektiv ist.

Surjektivität: Wir müssen zeigen: $\forall y \in \mathbb{R} \, \exists x \in \mathbb{R} : f(x) = y$.

Sei $y \in \mathbb{R}$ beliebig. Wir machen eine Fallunterscheidung:

 $-y \ge 5$:

Wähle $x = \frac{y+1}{3} \ge 2$. Damit gilt dann:

$$f(x) = f\left(\frac{y+1}{3}\right) = 3 \cdot \frac{y+1}{3} - 1 = y + 1 - 1 = y$$

-y < 5:

Wähle $x = \frac{y-1}{2} < 2$. Damit gilt dann:

$$f(x) = f\left(\frac{y-1}{2}\right) = 2 \cdot \frac{y-1}{2} + 1 = y - 1 + 1 = y$$

Damit ist f surjektiv.

Injektivität: Wir müssen zeigen: $\forall x_1 \in \mathbb{R} \forall x_2 \in \mathbb{R} : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

O.B.d.A. sei $x_1 < x_2$. Wir machen wieder eine Fallunterscheidung:

$$-x_1 < x_2 < 2$$
:

$$x_1 < x_2 \Rightarrow 2x_1 < 2x_2 \Rightarrow 2x_1 + 1 < 2x_2 + 1 \Rightarrow f(x_1) < f(x_2) \Rightarrow f(x_1) \neq f(x_2)$$

$$-2 \le x_1 < x_2:$$

$$x_1 < x_2 \Rightarrow 3x_1 < 3x_2 \Rightarrow 3x_1 - 1 < 3x_2 - 1 \Rightarrow f(x_1) < f(x_2) \Rightarrow f(x_1) \ne f(x_2)$$

$$-x_1 < 2 \le x_2:$$

$$x_1 < 2 \Rightarrow 2x_1 < 4 \Rightarrow 2x_1 + 1 < 5 \Rightarrow f(x_1) < 5$$

$$2 \le x_2 \Rightarrow 6 \le 3x_2 \Rightarrow 5 \le 3x_2 - 1 \Rightarrow 5 \le f(x_2)$$
Also: $f(x_1) < f(x_2)$ und somit $f(x_1) \ne f(x_2)$.

Damit ist f auch injektiv und insgesamt bijektiv.