

Mathematische Grundlagen Prof. Dr. Peter Becker Fachbereich Informatik Wintersemester 2016/17 17. November 2016

Lösungen zu Aufgabenblatt 7

Aufgabe 1 (Relationen und Funktionen)

Es sei $M = \{-2, -1, 0, 1, 2\}$ Wir definieren damit die folgenden Relationen:

$$R_1 = \{(x,y) \in M \times M | x^2 + y^2 \le 2\}$$

 $R_2 = \{(x,y) \in M \times M | x + y = 1\}$
 $R_3 = \{(x,y) \in M \times M | x + y = 0\}$

- (a) Geben Sie die Relation $R_1 \subseteq M \times M$ in aufzählender Form an. (2 Punkt)
- (b) Ist R_1 bzw. R_2 bzw. R_3 rechtseindeutig? Ist R_1 bzw. R_2 bzw. R_3 total? Begründen Sie Ihre Antworten.

(3 Punkte)

Lösung:

(a)

$$R_1 = \{(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1)\}\}$$

- (b) $-R_1$ ist nicht rechtseindeutig, weil z. B. 0 mehr als einmal als erste Komponente in den Paaren von R_1 auftritt: $(0,1), (0,-1) \in R_1$.
 - R_1 ist nicht total, denn $-2 \in M$ und $2 \in M$ treten nicht als erste Komponente eines Paares in R_1 auf.
 - Aus x + y = 1 folgt y = 1 x. Damit ist y eindeutig für ein x bestimmt und somit ist R_2 rechtseindeutig.
 - R_2 ist nicht total, da es für x=-1 kein passendes y gibt, so dass $(x,y) \in R_2$ gilt. Es müsste y=3 sein, aber $3 \notin M$.
 - Aus x + y = 0 folgt y = -x. Damit ist y eindeutig für ein x bestimmt und somit ist R_3 rechtseindeutig.

 R_3 ist auch total, denn für alle $x \in M$ gilt auch stets $-x \in M$ und somit $(x, -x) \in R_3$:

$$(-2,2), (-1,1), (0,0), (1,-1), (2,-2) \in R_3$$

Aufgabe 2 (Semantik der Prädikatenlogik)

Gegeben sei die prädikatenlogischen Belegung mit dem Universium

$$U = \{a, b, c, d, e\}$$

und

$$P = \{b, d, e\}$$

$$Q = \{a, c\}$$

$$R = \{a\}$$

für die einstelligen Prädikatensymbole P, Q, R.

Berechnen Sie wie in Beispiel 3.23, ob die folgenden Formeln jeweils wahr oder falsch sind:

(a)
$$(\forall x (P(x) \leftrightarrow \neg Q(x))$$

(b) $(\exists y (R(y) \land \neg Q(y)))$ (je 3 Punkte)

Lösung:

(a)

$$\mathcal{T}^*(\forall x \, (P(x) \leftrightarrow \neg Q(x)))$$

$$= \min\{\mathcal{T}^*(P(a) \leftrightarrow \neg Q(a)), \mathcal{T}^*(P(b) \leftrightarrow \neg Q(b)), \mathcal{T}^*(P(c) \leftrightarrow \neg Q(c)),$$

$$\mathcal{T}^*(P(d) \leftrightarrow \neg Q(d)), \mathcal{T}^*(P(e) \leftrightarrow \neg Q(e))\}$$

$$= \min\{\mathcal{T}^*((P(a) \to \neg Q(a)) \land (\neg Q(a) \to P(a))),$$

$$\mathcal{T}^*((P(b) \to \neg Q(b)) \land (\neg Q(b) \to P(b))),$$

$$\mathcal{T}^*((P(c) \to \neg Q(c)) \land (\neg Q(c) \to P(c))),$$

$$\mathcal{T}^*((P(d) \to \neg Q(d)) \land (\neg Q(d) \to P(d))),$$

$$\mathcal{T}^*((P(e) \to \neg Q(e)) \land (\neg Q(e) \to P(e)))\}$$

$$= \min\{\min\{\mathcal{T}^*(P(a) \to \neg Q(a)), \mathcal{T}^*(\neg Q(a) \to P(a))\},$$

$$\min\{\mathcal{T}^*(P(b) \to \neg Q(b)), \mathcal{T}^*(\neg Q(a) \to P(b))\},$$

$$\min\{\mathcal{T}^*(P(c) \to \neg Q(c)), \mathcal{T}^*(\neg Q(c) \to P(c))\},$$

$$\min\{\mathcal{T}^*(P(d) \to \neg Q(d)), \mathcal{T}^*(\neg Q(d) \to P(d))\},$$

$$\min\{\mathcal{T}^*(P(e) \to \neg Q(e)), \mathcal{T}^*(\neg Q(e) \to P(e))\}\}$$

$$= \min\{\min\{\mathcal{T}^*(\neg P(a) \lor \neg Q(a)), \mathcal{T}^*(Q(a) \lor P(a))\},$$

$$\min\{\mathcal{T}^*(\neg P(b) \lor \neg Q(b)), \mathcal{T}^*(Q(b) \lor P(b))\},$$

$$\min\{\mathcal{T}^*(\neg P(c) \lor \neg Q(c)), \mathcal{T}^*(Q(c) \lor P(c))\},$$

$$\min\{\mathcal{T}^*(\neg P(e) \lor \neg Q(e)), \mathcal{T}^*(Q(e) \lor P(e))\}\}$$

$$= \min\{\min\{\mathcal{T}^*(\neg P(e) \lor \neg Q(e)), \mathcal{T}^*(Q(e) \lor P(e))\}\}$$

$$= \min\{\min\{\max\{\mathcal{T}^*(\neg P(e)), \mathcal{T}^*(\neg Q(e))\}, \max\{\mathcal{T}^*(Q(a)), \mathcal{T}^*(P(b))\}\},$$

$$\min\{\max\{\mathcal{T}^*(\neg P(c)), \mathcal{T}^*(\neg Q(c))\}, \max\{\mathcal{T}^*(Q(c)), \mathcal{T}^*(P(c))\}\},$$

$$\min\{\max\{\mathcal{T}^*(\neg P(c)), \mathcal{T}^*(\neg Q(c))\}, \max\{\mathcal{T}^*(Q(d)), \mathcal{T}^*(P(c))\}\},$$

$$\min\{\max\{\mathcal{T}^*(\neg P(c)), \mathcal{T}^*(\neg Q(d))\}, \max\{\mathcal{T}^*(Q(d)), \mathcal{T}^*(P(c))\}\},$$

$$\min\{\max\{\mathcal{T}^*(\neg P(c)), \mathcal{T}^*(\neg Q(d))\}, \max\{\mathcal{T}^*(Q(d)), \mathcal{T}^*(P(d))\}\},$$

$$\min\{\max\{\mathcal{T}^*(\neg P(d)), \mathcal{T}^*(\neg Q(d))\}, \max\{\mathcal{T}^*(Q(d)), \mathcal{T}^*(P(d))\}\},$$

```
\min\{\min\{\max\{1-\mathcal{I}^*(P(a)), 1-\mathcal{I}^*(Q(a))\}, \max\{\mathcal{I}^*(Q(a)), \mathcal{I}^*(P(a))\}\},\
                                                                                  \min\{\max\{1-\mathcal{I}^*(P(b)), 1-\mathcal{I}^*(Q(b))\}, \max\{\mathcal{I}^*(Q(b)), \mathcal{I}^*(P(b))\}\},
                                                                                 \min\{\max\{1-\mathcal{I}^*(P(c)), 1-\mathcal{I}^*(Q(c))\}, \max\{\mathcal{I}^*(Q(c)), \mathcal{I}^*(P(c))\}\},
                                                                                 \min\{\max\{1-\mathcal{I}^*(P(d)), 1-\mathcal{I}^*(Q(d))\}, \max\{\mathcal{I}^*(Q(d)), \mathcal{I}^*(P(d))\}\},
                                                                                 \min\{\max\{1-\mathcal{I}^*(P(e)), 1-\mathcal{I}^*(Q(e))\}, \max\{\mathcal{I}^*(Q(e)), \mathcal{I}^*(P(e))\}\}\}
                                                = \min\{\min\{\max\{1-0,1-1\},\max\{1,0)\}\},\
                                                                                 \min\{\max\{1-1,1-0\},\max\{0,1\}\},\
                                                                                 \min\{\max\{1-0,1-1\},\max\{1,0\}\},\
                                                                                 \min\{\max\{1-1,1-0\},\max\{0,1\}\},\
                                                                                 \min\{\max\{1-1,1-0\},\max\{0,1\}\}\}
                                                = \min\{\min\{1, 1\},\
                                                                                 \min\{1,1\},
                                                                                 \min\{1,1\},
                                                                                 \min\{1,1\},
                                                                                 \min\{1,1\}
                                                = \min\{1, 1, 1, 1, 1\}
                                                = 1
(b)
                \mathcal{I}^*(\exists y (R(y) \land \neg Q(y))) = \max\{\mathcal{I}^*(R(a) \land \neg Q(a)), \mathcal{I}^*(R(b) \land \neg Q(b)), \mathcal{I}^*(R(c) \land \neg Q(c)), \mathcal{I}^*(R(c)
                                                                                                                                                     \mathcal{I}^*(R(d) \wedge \neg Q(d)), \mathcal{I}^*(R(e) \wedge \neg Q(e))
                                                                                                                    = \max\{\min\{\mathcal{I}^*(R(a)), \mathcal{I}^*(\neg Q(a))\}, \min\{\mathcal{I}^*(R(b)), \mathcal{I}^*(\neg Q(b))\},
                                                                                                                                            \min\{\mathcal{I}^*(R(c)), \mathcal{I}^*(\neg Q(c))\}, \min\{\mathcal{I}^*(R(d)), \mathcal{I}^*(\neg Q(d))\},
                                                                                                                                            \min\{\mathcal{I}^*(R(e)), \mathcal{I}^*(\neg Q(e))\}\}
                                                                                                                     = \max\{\min\{\mathcal{I}^*(R(a)), 1 - \mathcal{I}^*(Q(a))\}, \min\{\mathcal{I}^*(R(b)), 1 - \mathcal{I}^*(Q(b))\},
                                                                                                                                            \min\{\mathcal{I}^*(R(c)), 1-\mathcal{I}^*(Q(c))\}, \min\{\mathcal{I}^*(R(d)), 1-\mathcal{I}^*(Q(d))\},
                                                                                                                                            \min\{\mathcal{I}^*(R(e)), 1 - \mathcal{I}^*(Q(e))\}\}
                                                                                                                     = \max\{\min\{1, 1-1\}, \min\{0, 1-0\}, 
                                                                                                                                            \min\{0, 1-1\}, \min\{0, 1-0\},\
                                                                                                                                           \min\{0, 1-0\}\}
                                                                                                                     = \max\{\min\{1,0\},\min\{0,1\},
                                                                                                                                            \min\{0,0\},\min\{0,1\},
                                                                                                                                           \min\{0,1\}\}
                                                                                                                     = \max\{0,0,0,0,0,0\}
                                                                                                                     = 0
```

 $\min\{\max\{\mathcal{I}^*(\neg P(e)), \mathcal{I}^*(\neg Q(e))\}, \max\{\mathcal{I}^*(Q(e)), \mathcal{I}^*(P(e))\}\}\}$

Aufgabe 3 (Prädikatenlogik als Sprache)

Gegeben seien drei Mengen P, Q, R. Die Zugehörigkeit eines Element x des Universums zu einer dieser Mengen wollen wir wie in Aufgabe 1 durch P(x) bzw. Q(x) bzw. R(x) ausdrücken. Formulieren Sie damit in strenger prädikatenlogischer Syntax die folgenden Sachverhalte.

- (a) Jedes Element, das in Q ist, ist nicht in P.
- (b) Wenn ein Element weder in R noch in Q ist, dann ist es in P.
- (c) Es gibt ein Element, das in keiner der drei Mengen enthalten ist.
- (d) Wenn ein Element in R enthalten ist, dann ist es entweder nicht in Q oder nicht in P enthalten.
- (e) Nur Elemente die in P sind, sind auch in Q.
- (f) Wenn c nicht in P enthalten ist, dann ist Q die leere Menge.
- (g) In keiner der drei Mengen tritt a gemeinsam mit e auf.
- (h) Alle drei Mengen sind nicht leer.
- (i) $Q \neq R$.
- (j) $Q \subset P$.

Lösung:

- (a) $(\forall x (Q(x) \to \neg P(x)))$
- (b) $(\forall x ((\neg R(x) \land \neg Q(x)) \rightarrow P(x)))$
- (c) $(\exists x (\neg P(x) \land \neg Q(x) \land \neg R(x))) \equiv \neg (\forall x (P(x) \lor Q(x) \lor R(x)))$
- (d) $(\forall x (R(x) \rightarrow ((\neg Q(x) \land P(x)) \lor (Q(x) \land \neg P(x)))))$
- (e) $(\forall x (Q(x) \rightarrow P(x)))$
- (f) $(\neg P(c) \rightarrow (\forall x \, \neg Q(x))) \equiv (\neg P(c) \rightarrow (\neg \exists x \, Q(x)))$
- (g) $\neg (P(a) \land P(e)) \land \neg (Q(a) \land Q(e)) \land \neg (R(a) \land R(e)) \equiv (\neg P(a) \lor \neg P(e)) \land (\neg Q(a) \lor \neg Q(e)) \land (\neg R(a) \lor \neg R(e))$
- (h) $(\exists x P(x)) \wedge (\exists x Q(x)) \wedge (\exists x R(x))$

Hinweis: Die sprachliche Allquantifizierung betrifft hier die Mengen, also die Prädikatensymbole. In der Prädikatenlogik 1. Stufe ist aber nur eine Allquantifizierung über die Objekte erlaubt, dagegen nicht über die Prädikatensymbole. Deshalb müssen hier die Mengen explizit angegeben werden.

- $(\mathrm{i}) \ \left(\exists x \left(Q(x) \land \neg R(x) \right) \right) \lor \left(\exists x \left(\neg Q(x) \land R(x) \right) \right) \equiv \left(\exists x \left(\left(Q(x) \land \neg R(x) \right) \lor \left(\neg Q(x) \land R(x) \right) \right) \right)$
- (j) $(\forall x (Q(x) \to P(x))) \land (\exists x (\neg Q(x) \land P(x)))$