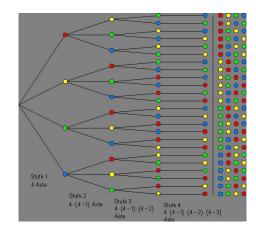
Kapitel 6

Elementare Kombinatorik und Abzählbarkeit



Inhalt

- 6 Elementare Kombinatorik und Abzählbarkeit
 - Elementare Kombinatorik
 - Abzählbarkeit

Multiplikationssymbol

• Zur Notation eines Produktes mehrerer Faktoren $x_1, x_2, ..., x_n$ verwenden wir das Symbol \prod :

$$x_1 \cdot x_2 \cdot \ldots \cdot x_n = \prod_{i=1}^n x_i$$

• Der Multiplikationsindex kann dabei auch zwischen $u, o \in \mathbb{N}_0$ laufen:

$$x_u \cdot x_{u+1} \cdot \ldots \cdot x_o = \prod_{i=u}^o x_i$$

• Für den Fall u > o legen wir fest:

$$\prod_{i=u}^{o} x_i = 1$$

Fakultät

Definition 6.1

Für $n \in \mathbb{N}$ heißt das Produkt

$$n! = \prod_{k=1}^{n} k = 1 \cdot 2 \cdot \ldots \cdot n$$

Fakultät von n. Wir setzen 0! = 1.

Beispiel 6.2

5! = 120

10! = 3628800

20! = 2432902008176640000

30! = 265252859812191058636308480000000

Permutation

Definition 6.3

Es sei $X = \{x_1, x_2, \dots, x_n\}$ eine *n*-elementige Menge. Dann heißt eine bijektive Abbildung

$$\sigma: X \to X$$

Permutation.

Satz 6.4

Für eine n-elementige Menge X gibt es n! verschiedene Permutationen.

- Für die mathematische Betrachtung von Permutationen beschränkt man sich üblicherweise auf $X = \{1, 2, ..., n\}$.
- Für uns ist eine Permutation also stets eine bijektive Abbildung

$$\sigma: \{1,2,\ldots,n\} \to \{1,2,\ldots,n\}.$$

Schreibweise von Permutationen

Eine Permutation $\sigma:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ stellt man üblicherweise in Form einer zweizeiligen Matrix

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array}\right)$$

oder verkürzt in Tupelform

$$\sigma = (\sigma(1) \ \sigma(2) \ \cdots \ \sigma(n))$$

dar.

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{array}\right) = \left(\begin{array}{cccc} 2 & 4 & 1 & 3 \end{array}\right)$$

$$\sigma^{-1} = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{array}\right) = \left(\begin{array}{ccc} 3 & 1 & 4 & 2 \end{array}\right)$$

Symmetrische Gruppe

Definition 6.6

 S_n bezeichne die Menge aller Permutationen auf der Menge $\{1, 2, \dots, n\}$.

Bemerkung:

- (S_n, \circ) bildet mit der Komposition \circ von Abbildungen als Verknüpfung eine Gruppe.
- S_n wird auch als symmetrische Gruppe bezeichnet.
- Eine Permutationsgruppe ist eine Untergruppe von S_n .
- Nach dem sogenannten Satz von Cayley ist jede endliche Gruppe isomorph zu einer Permutationsgruppe (siehe Algebra).

Binomialkoeffizient

Definition 6.7

Sei $n, k \in \mathbb{N}_0$. Dann heißt der Ausdruck

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

Binomialkoeffizient von n über k.

Rechenregeln für Binomialkoeffizienten

Satz 6.8

Es gilt:

(i)

$$\binom{n}{k} = \binom{n}{n-k}$$

(ii)

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Beweis.

Übungsaufgabe.

Anzahl k-elementiger Teilmengen

Satz 6.9

Es sei M eine n-elementige Menge.

Dann gibt es $\binom{n}{k}$ verschiedene k-elementige Teilmengen von M, also:

$$|\{A \in \mathcal{P}(M) \mid |A| = k\}| = \binom{n}{k}$$

Beweis.

Vollständige Induktion über n. Induktionsanfang bei n=0 für die leere Menge.

Binomischer Lehrsatz

Satz 6.10

Für alle $a, b \in \mathbb{R}$ und alle $n \in \mathbb{N}_0$ gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Beweis.

Vollständige Induktion, Übungsaufgabe.

Hinweis: Indexverschiebung

$$\sum_{k=0}^{n} a_k = \sum_{k=1}^{n+1} a_{k-1}$$

Schubfachprinzip

Satz 6.11

Es seien n Elemente auf m (paarweise disjunkte) Mengen verteilt und es gelte n > m.

Dann gibt es mindestens eine Menge, die mindestens zwei Elemente enthält.

Beweis.

Wenn jede der m Mengen höchstens ein Element enthalten würde, dann gäbe es insgesamt höchstens m Elemente. Widerspruch zu n > m.

Andere Bezeichnungen für das Schubfachprinzip: Taubenschlagprinzip, engl.: pigeonhole principle

Anwendungen des Schubfachprinzips

- (i) Prof. B. hat in seiner Sockenkiste weiße, schwarze und grüne Socken. Wenn er vier Socken aus der Kiste nimmt, hat er mindestens zwei Socken mit der gleichen Farbe.
 - n = 4 Elemente verteilt auf m = 3 Mengen.
- (ii) Unter je fünf Punkten, die in einem Quadrat der Seitenlänge 2 liegen, gibt es stets zwei, die einen Abstand $\leq \sqrt{2}$ haben.
 - Wir unterteilen das Quadrat durch halbieren der Seitenlänge in vier Unterquadrate mit Seitenlänge 1.
 - n = 5 Punkte verteilen sich auf m = 4 Unterquadrate.
 - Dann muss mindestens ein Unterquadrat zwei Punkte enthalten.

Bijektionsprinzip

Satz 6.13

Seien A und B endliche Mengen.

Dann gilt |A| = |B| genau dann, wenn eine bijektive Funktion $f : A \rightarrow B$ existiert.

Beweis.

 $,\Rightarrow$ ": Es gelte |A|=|B|=:n.

Sei $A = \{a_n, \ldots, a_n\}$ und $B = \{b_1, \ldots, b_n\}$. Dann ist $f : A \to B$ definiert durch

$$f(a_i)=b_i$$

eine bijektive Abbildung.

Fortsetzung Beweis.

" =": Sei $f: A \rightarrow B$ eine bijektive Abbildung.

Annahme: $|A| \neq |B|$. Dann muss entweder |B| < |A| oder |B| > |A| gelten.

- **1** Sei |B| < |A|. Mit dem Schubfachprinzip folgt, dass es a_i und a_j mit $i \neq j$ und $f(a_i) = f(a_j)$ geben muss. Widerspruch zur Injektivität von f.
- ② Sei |B| > |A|. Da f bijektiv ist, muss auch $f^{-1}: B \to A$ bijektiv sein (siehe Folgerung 5.44).

Mit dem Schubfachprinzip folgt, dass es b_i und b_j mit $i \neq j$ und $f^{-1}(b_i) = f^{-1}(b_j)$ geben muss. Widerspruch zur Injektivität von f^{-1} .

Also ist die Annahme falsch. Damit folgt |A| = |B|.

Anwendungen des Bijektionsprinzips

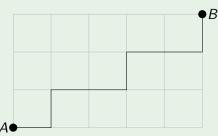
Aus Satz 5.4 wissen wir, dass eine n-elementige Menge 2^n verschiedene Teilmengen hat. Hier ein anderer Beweis mit dem Bijektionsprinzip.

- Sei $A = \{a_1, \ldots, a_n\}$ eine *n*-elementige Menge.
- Sei $\mathcal{S} = \{s_1 \cdots s_n | s_i \in \{0,1\}\}$ die Menge der Bitstrings der Länge n.
- Wir konstruieren eine bijektive Abbildung $f : \mathcal{P}(A) \to \mathcal{S}$ wie folgt: Für $B \subseteq A$ ist $f(B) = s_1 \cdots s_n$ mit

$$s_i = \left\{ egin{array}{ll} 1 & ext{falls } a_i \in B \\ 0 & ext{sonst} \end{array} \right.$$

- Es gibt 2ⁿ verschiedene Bitstrings der Länge n.
- Mit dem Bijektionsprinzip folgt, dass es auch 2^n verschiedene Teilmengen einer n-elementigen Menge geben muss.

- Gegeben sei ein Gitter der Breite *m* und der Höhe *n*.
- Wie viele verschiedene Wege gibt es von links unten (A) nach rechts oben (B), wenn man in einem Schritt nur nach rechts und oben gehen darf?



- Beispiel für m = 5 und n = 3:
- Lösung: $\binom{n+m}{n}$
- Beweis durch Konstruktion einer Bijektion zwischen den verschiedenen Wegen und den *n*-elementigen Teilmengen einer n + m-elementigen Menge.

Prinzip des doppelten Abzählens

- Wir stellen eine Relation $R \subseteq A \times B$ mithilfe einer boolschen Matrix dar (siehe Folie 138).
- Dann bilden wir die Summe der Zeilensummen und die Summe der Spaltensummen.
- Die beiden Summen m
 üssen identisch sein.
- Durch Gleichsetzung der Summen erhalten wir eine Formel, die wir zur Berechnung einer fraglichen Anzahl nutzen können.

Beispiel 6.16

Dekan H. setzt fest, dass jeder Student genau 4 der 7 angebotenen Vorlesungen hören muss. Die Dozenten melden 45, 36, 30, 20, 25, 12 und 16 Zuhörer. Wie viele Studenten gibt es?

- Sei $S = \{s_1, \ldots, s_n\}$ die Menge der Studenten.
- Sei $V = \{v_1, \dots, v_7\}$ die Menge der Vorlesungen.
- Es gelte $(s, v) \in R \subseteq S \times V$ genau dann, wenn Student s Vorlesung v hört.

	v_1							Σ
s_1	0	1 1	1	1	0	1	0	4
- 2	1	1	0	1	1	0	0	4
:	:	:	÷	:	÷	÷	:	: 4
s _n	0	1	0	1	1	0	1	4
Σ	45	36	30	20	25	12	16	= 4 <i>n</i>

• Also
$$n = \frac{\sum_{v \in V} \text{Zuh\"{o}rer in } v}{4}$$
, hier $n = 46$.