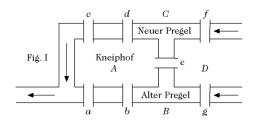
Kapitel 1

Einführung



Inhalt

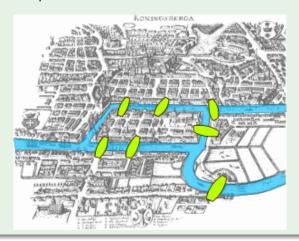
- Einführung
 - Grundbegriffe und Bezeichungen
 - Bäume
 - Gerichtete Graphen

15 / 296

Das Königsberger Brückenproblem

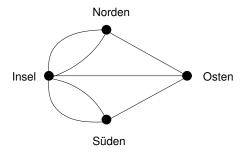
Beispiel 1.1 (Euler, 1736)

Gibt es einen Rundweg durch Königsberg, der jede der sieben Brücken genau einmal überquert?



Das Königsberger Brückenproblem (2)

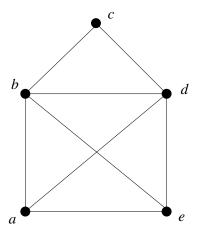
Die Abstraktion des Problems:



Gibt es einen Rundweg, der jede Linie (Kante) genau einmal enthält?

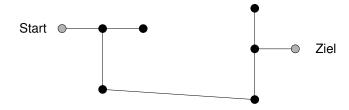
Wintersemester 2018/19

Das Haus vom Nikolaus

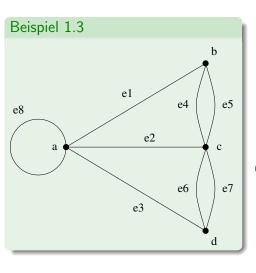


Labyrinth

Repräsentation als Graph:



Beispielgraph



- Ein Graph besteht aus Knoten und Kanten.
- a, b, c, d sind Knoten.
- Diese Knoten werden durch die Kanten e₁ bis e₈ miteinander verbunden.
- Ein Graph symbolisiert die max. zweistelligen Beziehungen zwischen Elementen einer Menge.

Graph

Definition 1.4

Ein Graph (graph) $G = (V, E, \gamma)$ ist ein Tripel bestehend aus:

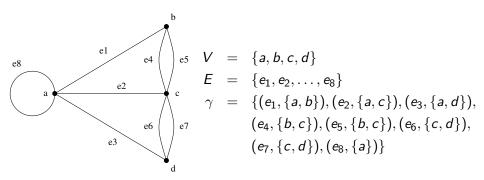
- V, einer nicht leeren Menge von Knoten (vertices),
- E, einer Menge von Kanten (edges) und
- γ , einer Inzidenzabbildung (incidence relation), mit $\gamma: E \longrightarrow \{X|X \subseteq V, 1 \leq |X| \leq 2\}.$

Zwei Knoten $a, b \in V$ heißen adjazent (adjacent) gdw. $\exists e \in E : \gamma(e) = \{a, b\}.$

Ein Knoten $a \in V$ und eine Kante $e \in E$ heißen inzident (incident) gdw. $a \in \gamma(e)$.

22 / 296

Beispielgraph (2)



Endliche Graphen

Definition 1.5

Ein Graph $G = (V, E, \gamma)$ heißt endlich (finite) gdw. die Knotenmenge V und die Kantenmenge E endlich sind.

Wir treffen folgende Vereinbarung:

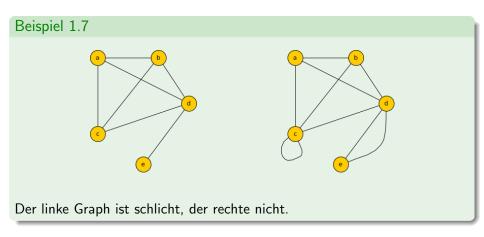
- Im weiteren betrachten wir nur endliche Graphen.
- Der Zusatz "endlich" lassen wir dabei weg.

Schlichte Graphen

Definition 1.6

- Eine Kante e ∈ E heißt Schlinge (loop) gdw. e nur zu einem Knoten inzident ist.
- Zwei Kanten $e_1, e_2 \in E$ heißen parallel (parallel) gdw. sie zu den selben Knoten inzident sind.
- Ein Graph heißt schlicht (simple) gdw. G keine Schlingen und keine parallelen Kanten enthält.

Schlichte Graphen (2)



Schlichte Graphen (3)

Ein schlichter Graph G = (V, E) wird beschrieben durch

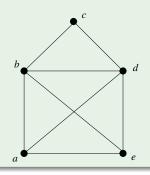
- eine Knotenmenge V und
- eine Kantenmenge E, wobei E eine Menge zweielementiger Teilmengen von V ist, also

$$E \subseteq \{\{v,w\}|v,w\in V,v\neq w\}.$$

Wir betrachten im folgenden fast ausschließlich schlichte Graphen.

Schlichte Graphen (4)

Beispiel 1.8



$$V = \{a, b, c, d, e\}$$

$$E = \{\{a, b\}, \{a, d\}, \{a, e\}, \{b, c\}, \{b, d\}, \{b, e\}, \{c, d\}, \{d, e\}\}$$

Diagramme

- Graphen können durch Diagramme veranschaulicht werden.
- Der selbe Graph kann viele verschiedene Diagramme haben.

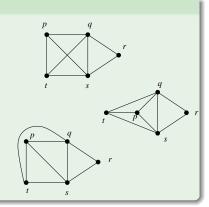
Beispiel 1.9

$$G = (V, E)$$
 mit

$$V = \{p, q, r, s, t\}$$

$$E = \{\{p, q\}, \{p, s\}, \{p, t\}\}\}$$

$$E = \{\{p,q\},\{p,s\},\{p,t\},\{q,r\}, \{q,s\},\{q,t\},\{r,s\},\{s,t\}\}$$



Grad

Definition 1.10

Der Grad (degree) deg(v) eines Knotens $v \in V$ ist die Zahl der zu v inzidenten Kanten. Hierbei zählen Schlingen doppelt.

Der Maximalgrad $\Delta(G)$ eines Graphen G ist definiert durch

$$\Delta(G) = \max\{\deg(v)|v \in V\}$$

Der Minimalgrad $\delta(G)$ eines Graphen G ist definiert durch

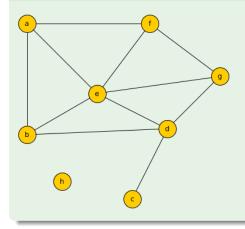
$$\delta(G) = \min\{\deg(v)|v \in V\}$$

Ein Knoten $v \in V$ mit deg(v) = 0 heißt isoliert.

Ein Knoten $v \in V$ mit deg(v) = 1 heißt Blatt.

Grad (2)

Beispiel 1.11



- $\delta(G) = 0$ (für Knoten h)
- $\Delta(G) = 5$ (für Knoten e)
- Knoten c ist ein Blatt.
- Knoten *h* ist ein isolierter Knoten.

Handschlaglemma

- Jede Kante liefert genau zweimal einen Beitrag zu der Summe der Grade über alle Knoten.
- Dies gilt auch für Schlingen.

Lemma 1.12

Für jeden Graphen $G = (V, E, \gamma)$ gilt

$$\sum_{v \in V} \deg(v) = 2|E|$$

Handschlaglemma (2)

Folgerung 1.13

Jeder Graph hat eine gerade Anzahl an Knoten mit ungeradem Grad.

Beweis.

$$\begin{array}{rcl} V_g &:= & \{v \in V | \deg(v) \text{ ist gerade}\} \\ V_u &:= & \{v \in V | \deg(v) \text{ ist ungerade}\} \\ 2|E| &= & \sum_{v \in V} \deg(v) \\ &= & \sum_{v \in V_g} \deg(v) + \sum_{v \in V_u} \deg(v) \end{array} \quad \begin{array}{rcl} \text{Definition} \\ \text{Handschlaglemma} \\ \text{weil } V = V_g + V_u \end{array}$$

$$\Rightarrow & \sum_{v \in V_u} \deg(v) \text{ ist gerade} \qquad \left| \text{ weil } 2|E| \text{ und } \sum_{v \in V_g} \deg(v) \text{ gerade} \right| \end{array}$$

Peter Becker (H-BRS)

 $\Rightarrow |V_{\mu}|$ ist gerade

weil alle Summanden ungerade

Grad (3)

Satz 1.14

Jeder Graph G = (V, E) mit mindestens zwei Knoten enthält zwei Knoten, die den gleichen Grad haben.

Der Beweis dieses Satzes erfolgt mit Hilfe eines wichtigen kombinatorischen Prinzips, dem Schubfachprinzip.

Schubfachprinzip

Satz 1.15

Es seien n Elemente auf m (paarweise disjunkte) Mengen verteilt und es gelte n > m.

Dann gibt es mindestens eine Menge, die mindestens zwei Elemente enthält.

Beweis.

Wenn jede der m Mengen höchstens ein Element enthalten würde, dann gäbe es insgesamt höchstens m Elemente. Widerspruch zu n > m.

Andere Bezeichnungen für das Schubfachprinzip: Taubenschlagprinzip, engl.: pigeonhole principle

Wintersemester 2018/19

35 / 296

Schubfachprinzip (2)

Beispiel 1.16

Herr Müller hat in seiner Sockenkiste weiße, schwarze und grüne Socken.

Wenn er vier Socken aus der Kiste nimmt, hat er mindestens zwei Socken mit der gleichen Farbe.

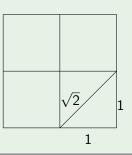
n = 4 Elemente verteilt auf m = 3 Mengen.

Schubfachprinzip (3)

Beispiel 1.17

Unter je fünf Punkten, die in einem Quadrat der Seitenlänge 2 liegen, gibt es stets zwei, die einen Abstand $\leq \sqrt{2}$ haben.

- Wir unterteilen das Quadrat durch halbieren der Seitenlänge in vier Unterquadrate mit Seitenlänge 1.
- n = 5 Punkte verteilen sich auf m = 4 Unterquadrate.
- Dann muss mindestens ein Unterquadrat zwei Punkte enthalten.



36 / 296

Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19

Beweis von Satz 1.14

Beweis.

Damit haben wir aber genauso viele Knoten wie Mengen, das Schubfachprinzip ist noch nicht anwendbar. Deshalb Fallunterscheidung:

G hat keinen isolierten Knoten

$$\Rightarrow V_0 = \emptyset$$

 \Rightarrow n Knoten verteilen sich auf die m = n - 1 Mengen V_1, \dots, V_{n-1}

$$\Rightarrow \exists i : |V_i| \geq 2$$

Fortsetzung Beweis.

G hat einen isolierten Knoten

- ⇒ Es existiert kein Knoten, der zu allen anderen Knoten adjazent ist
- \Rightarrow $V_{n-1} = \emptyset$
- \Rightarrow n Knoten verteilen sich auf die m = n 1 Mengen V_0, \dots, V_{n-2}
- $\Rightarrow \exists i : |V_i| \geq 2$

Vollständiger Graph

Definition 1.18

Sei G = (V, E) ein Graph.

Gilt $\{v, w\} \in E$ für alle $v, w \in V, v \neq w$, dann heißt G vollständig (complete).

Mit K_n wird der vollständige Graph mit n Knoten bezeichnet.

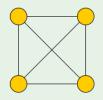
Bemerkungen:

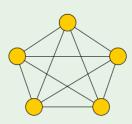
- In einem vollständigen Graphen sind je zwei Knoten adjazent.
- Der K_n hat $\binom{n}{2} = \frac{n(n-1)}{2}$ Kanten.

Vollständiger Graph (2)

Beispiel 1.19

Die vollständigen Graphen K_4 und K_5 .





Komplementgraph

Definition 1.20

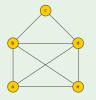
Es sei G=(V,E) ein Graph. Dann heißt der Graph $\overline{G}=(V,\overline{E})$ mit

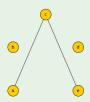
$$\overline{E} = \{\{v, w\} | v, w \in V, v \neq w\} \setminus E$$

Komplementgraph (complementary graph) von G.

Beispiel 1.21

Das "Haus vom Nikolaus" und sein Komplementgraph.





Untergraph

Definition 1.22

Sei G = (V, E) ein Graph. Ein Graph H = (W, F) mit $W \subseteq V$ und $F \subseteq E$ heißt Untergraph (subgraph) von G.

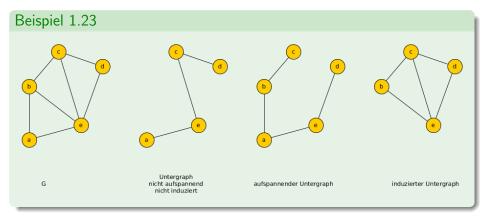
Gilt W = V, dann heißt H aufspannender Untergraph (spanning subgraph) von G.

Gilt

$$F = \{ \{v, w\} | \{v, w\} \in E, v, w \in W \},\$$

dann heißt H induzierter Untergraph (induced subgraph) von G. Für solch einen induzierten Untergraphen schreiben wir auch G(W).

Untergraph (2)



Clique

Definition 1.24

Es sei G = (V, E) ein Graph.

Eine Knotenmenge $U \subseteq V$ (bzw. der von U induzierte Untergraph G(U)) heißt Clique (clique) gdw. G(U) ein vollständiger Graph ist.

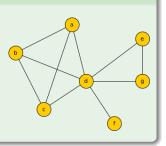
Die maximale Größe einer Clique in G wird mit $\omega(G)$ bezeichnet, d.h.

$$\omega(G) := \max\{|U| \mid U \text{ ist Clique in } G\}$$

Clique (2)

Beispiel 1.25

- $\{a, b, c, d\}$ bildet eine Clique der Größe 4.
- $\{d, e, g\}$ bildet eine Clique der Größe 3.
- $\{d, f\}$ bildet eine Clique der Größe 2.
- $\omega(G) = 4$



Wege

Definition 1.26

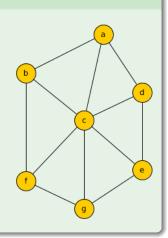
Es sei G = (V, E) ein Graph.

- Eine Folge (v_0, v_1, \ldots, v_n) von Knoten mit $e_i := \{v_{i-1}, v_i\} \in E$ für $i = 1, 2, \ldots, n$ heißt Kantenzug (walk).
- Ein Kantenzug, bei dem die Kanten e_i alle verschieden sind, heißt Weg (trail). Die Länge des Weges ist n.
- Ein Weg heißt einfacher Weg (path) gdw. die Knoten v_j paarweise verschieden sind.

Wege (2)

Beispiel 1.27

- (a, b, c, a, b, f) ist ein Kantenzug, aber kein Weg.
- (c, b, f, c, d) ist ein Weg, aber kein einfacher Weg.
- (a, b, f, c, d) ist ein einfacher Weg.



Kreise

Definition 1.28

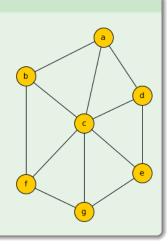
Die folgenden Bezeichnungen beziehen sich auf Definition 1.26.

- Gilt in einem Kantenzug $v_0 = v_n$, so sprechen wir von einem geschlossenen Kantenzug (closed walk).
- Ein Weg für den $v_0 = v_n$ gilt heißt Kreis (closed trail).
- Ein Kreis, bei dem die Knoten v_j mit Ausnahme von $v_0 = v_n$ paarweise verschieden sind, heißt einfacher Kreis (cycle).

Kreise (2)

Beispiel 1.29

- (a, b, c, a, d, c, a) ist ein geschlossener Kantenzug, aber kein Kreis.
- (b, c, e, d, c, f, b) ist ein Kreis, aber kein einfacher Kreis.
- (a, b, f, c, a) ist ein einfacher Kreis.



Bemerkungen zu Wegen und Kreisen

- Ein Knoten alleine stellt einen Kreis der Länge 0 dar.
- Im folgenden ist mit "Kreis" immer ein nichttrivialer Kreis gemeint, d.h. ein Kreis mit Länge > 0.
- Nur in schlichten Graphen ist durch die Knotenfolge der Weg bzw.
 Kreis eindeutig bestimmt.
- In schlichten Graphen existieren keine Kreise der Länge 1 und 2.

Die Begriffe werden in der Literatur nicht einheitlich verwendet.

Hilfssätze für Wege und Kreise

Lemma 1.30

Es sei G = (V, E) ein Graph und es seien $a, b \in V, a \neq b$ zwei verschiedene Knoten von G. Dann gilt:

Wenn ein Kantenzug von a nach b existiert, dann existiert auch ein einfacher Weg von a nach b.

Lemma 1.31

Wenn ein Graph G einen geschlossenen Kantenzug K enthält, in dem eine Kante von K nicht mehrfach vorkommt, dann enthält G auch einen einfachen Kreis.

Zusammenhang

Definition 1.32

Es sei G = (V, E) ein Graph.

Zwei Knoten $v, w \in V$ heißen verbindbar gdw. ein Weg von v nach w existiert.

G heißt zusammenhängend (connected) gdw. je zwei Knoten von G verbindbar sind.

Eine Zusammenhangskomponente (connected component) von G ist

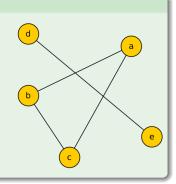
- ein durch eine Knotenmenge $U \subseteq V$ induzierter Untergraph G(U), der zusammenhängend und
- bezüglich der Knotenmenge maximal ist, d.h. G(W) ist nicht zusammenhängend für alle $W \supseteq U$.

Zusammenhang (2)

Beispiel 1.33

Ein nicht zusammenhängender Graph mit Zusammenhangskomponenten induziert durch

- {a, b, c} und
- $\{d, e\}$.



Zusammenhang (3)

Satz 1.34

Jeder zusammenhängende Graph mit n Knoten hat mindestens n-1 Kanten.

Beweis.

Mittels vollständiger Induktion über die Anzahl der Knoten, also über n.

Induktionsanfang: n=1: Ein Graph mit genau einem Knoten ist zusammenhängend und hat keine Kanten.

Induktionsschritt: $n \rightarrow n + 1$:

Induktionsvoraussetzung: Jeder zusammenhängende Graph mit $n' \le n$ Knoten hat mindestens n'-1 Kanten.

Induktionsbehauptung: Jeder zusammenhängende Graph mit n+1 Knoten hat mindestens n Kanten.

55 / 296

Fortsetzung Beweis.

Es sei G = (V, E) ein Graph mit n + 1 Knoten.

	Wähle beliebigen Knoten $v \in V$.	
	$k := \deg(v)$.	Definition
\Rightarrow	$k \ge 1$	weil G z.h.
	Es sei G' der Graph der entsteht, wenn	Definition
	wir aus G den Knoten v und alle mit v	
	inzidenten Kanten entfernen.	
	G' besteht aus höchstens $I \leq k$ ZHKs,	wegen $deg(v) = k$
	ZHK_1,\ldots,ZHK_I .	
	Jede ZHK_i enthält höchstens n Knoten.	weil G' insgesamt nur
		n Knoten hat
\Rightarrow	Wir können für jede ZHK; die Induktions-	
	voraussetzung anwenden.	
	Es sei n_i die Anzahl der Knoten in ZHK_i .	Definition
\Rightarrow	Jede ZHK_i hat mindestens $n_i - 1$ Kanten.	Induktionsvoraussetzung

Fortsetzung Beweis.

	$n_l=n$.	Alle Knoten von G ausgenommen v sind in den ZHKs von G' .
<i>E</i> ≥	$(n_1-1)+\cdots+(n_l-1)+k$	Kanten in ZHKs von G' plus die mit v inzidenten Kanten
=	$n_1+\cdots+n_l-l+k$	
\geq	n-k+k	s.o., und weil $l \leq k$
=	n	q.e.d.

Zusammenhang (4)

Lemma 1.35

Ein Graph G = (V, E) ist genau dann zusammenhängend, wenn für jede disjunkte Zerlegung $V = V_1 + V_2$ mit $V_1, V_2 \neq \emptyset$ eine Kante $e = \{v, w\}$ existiert mit $v \in V_1$ und $w \in V_2$.

Beweis.

Ubungsaufgabe.

Isomorphie

Definition 1.36

Zwei Graphen $G_1=(V_1,E_1)$ und $G_2=(V_2,E_2)$ heißen isomorph (isomorphic) gdw. es eine bijektive Abbildung $\varphi:V_1\longrightarrow V_2$ gibt, so dass folgendes gilt:

$$\forall v, w \in V_1 : \{v, w\} \in E_1 \iff \{\varphi(v), \varphi(w)\} \in E_2$$

Wir nennen φ dann einen Isomorphismus von G_1 auf G_2 und schreiben $G_1 \cong G_2$.

Isomorphie (2)

- Zwei Graphen sind genau dann isomorph, wenn der eine Graph aus dem anderen Graphen durch Umbennenung der Knoten hervorgeht.
- Isomorphe Graphen haben die gleichen graphentheoretischen Eigenschaften.
- Für den Nachweis, dass zwei Graphen G_1 und G_2 nicht isomorph sind, genügt es, eine graphentheoretische Eigenschaft zu finden, in der sich G_1 und G_2 unterscheiden.

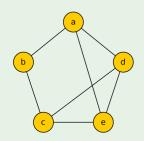
Isomorphie (3)

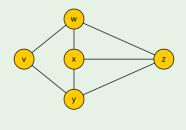
Beispiel 1.37

Die Abbildung

$$\varphi = \{a \to w, b \to v, c \to y, d \to x, e \to z\}$$

ist ein Isomorphismus für die folgenden Graphen.





60 / 296

Isomorphie (4)

Definition 1.38

Wenn in Defintion 1.36 $G_1 = G_2$ gilt, dann ist φ ein Automorphismus.

Bemerkung: Ein Automorphismus für einen Graphen G ist eine strukturerhaltende Abbildung von G auf sich selbst.

Beispiel 1.39

Für den linken Graphen aus Beispiel 1.37 ist

$$\{a \rightarrow c, b \rightarrow b, c \rightarrow a, d \rightarrow e, e \rightarrow d\}$$

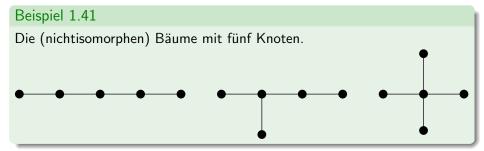
ein Automorphismus.

Bäume

Definition 1.40

Es sei G = (V, E) ein Graph. G heißt Wald (forest) gdw. G keinen Kreis enthält.

G heißt Baum (tree) gdw. G ein Wald und zusammenhängend ist.



Charakterisierung von Bäume

Satz 1.42

Für einen Graphen G = (V, E) mit |V| = n sind die folgenden Aussagen äquivalent:

- 1 G ist ein Baum.
- 2 Je zwei Knoten von G sind durch genau einen Weg verbunden.
- **3** G ist zusammenhängend, aber für jede Kante $e \in E$ ist $G' = (V, E \setminus \{e\})$ nicht zusammenhängend.
- G ist zusammenhängend und hat genau n-1 Kanten.
- **5** G ist kreisfrei und hat genau n-1 Kanten.
- G ist kreisfrei, aber für je zwei nicht adjazente Knoten v, w von G enthält $G'' = (V, E \cup \{\{v, w\}\})$ genau einen Kreis.

Beweis.

Der Beweis zur Äquivalenz von (1) bis (3) ist Übungsaufgabe.

Gerichtete Graphen

Für viele Anwendungen ist es sinnvoll, die Kanten mit einer Richtung zu versehen.

Definition 1.43

Ein gerichteter Graph (directed graph) ist ein Paar G = (V, A) bestehend aus den Mengen

- V, der Menge der Knoten und
- A, der Menge der gerichteten Kanten (arcs), die aus geordneten Paaren (v, w) mit $v, w \in V, v \neq w$ besteht.

Für eine gerichtete Kante a = (v, w) heißt v der Anfangsknoten (initial vertex) und w der Endknoten (terminal vertex) von a.

Bemerkung: Man kann ungerichtete Graphen als gerichtete Graphen betrachten, bei denen die Relation *A* symmetrisch ist.

Definition 1.44

Es sei G = (V, A) ein gerichteter Graph.

- $indeg(v) := |\{(x, v) | (x, v) \in A\}|$ heißt der Eingangsgrad von $v \in V$.
- outdeg $(v) := |\{(v,y)|(v,y) \in A\}|$ heißt der Ausgangsgrad von $v \in V$.
- Ein gerichteter Kantenzug ist eine Folge (v_0, \ldots, v_n) von Knoten mit $e_i := (v_{i-1}, v_i) \in A$ für $i = 1, \ldots, n$.
- Die Begriffe aus Definition 1.26 und Definition 1.28 werden analog auf gerichtete Graphen übertragen.
- Der einem gerichteten Graph G = (V, A) zugeordnete ungerichtete Graph G' = (V, A') ist definiert durch: $\{v, w\} \in A'$ gdw. $(v, w) \in A$ oder $(w, v) \in A$.
- *G* heißt zusammenhängend gdw. der zugeordnete ungerichtete Graph *G'* zusammenhängend ist.
- G heißt stark zusammenhängend gdw. es für je zwei Knoten $v, w \in V$ einen gerichteten Weg von v nach w gibt.

Handschlaglemma für gerichtete Graphen

Lemma 1.45

Für einen gerichteten Graphen G = (V, A) gilt:

$$\sum_{v \in V} \mathsf{indeg}(v) = \sum_{v \in V} \mathsf{outdeg}(v)$$

Beispiel 1.46

Tafel ♥.

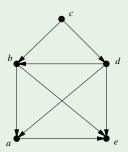
DAGs

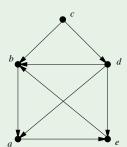
Definition 1.47

Ein gerichteter Graph G = (V, A) heißt DAG (dag, directed acyclic graph) gdw. G keinen einfachen gerichteten Kreis der Länge ≥ 2 enthält.

Beispiel 1.48

Der linke Graph ist ein DAG, der rechte nicht.





Zusammenfassung

- Ein Graph $G = (V, E, \gamma)$ repräsentiert die zweistelligen Beziehungen zwischen den Elementen einer Menge V.
- Ein schlichter Graph G = (V, E) enthält weder Schlingen noch parallele Kanten.
- Schubfachprinzip
- wichtige Grundbegriffe
- Ein Baum ist kreisfrei und zusammenhängend.
- gerichtete Graphen