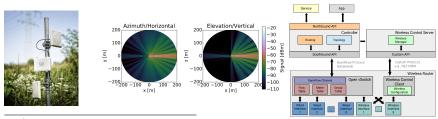
Wireless Communication 101 using LoRa CCC u23 Long Range Wireless Networks

Michael Rademacher

michael.rademacher@h-brs.de (PGP: E88A7A68) Telegram: @m1rade


Hochschule Bonn-Rhein-Sieg

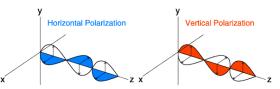
Last edited: October 25, 2017

1

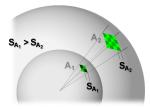
Whoami

- Researcher and PhD-Student at Hochschule Bonn-Rhein-Sieg, Sankt Augustin
- Research Topics:
 - Broadband internet connectivity for rural areas¹
 - Long-Distance Wireless Networks and Directional Antennas
 - Propagation modeling
 - Software-Defined (Wireless) Networking
 - Low-Power Wide-Area Network (LPWAN)
 - Building automation
 - Crypto currency and Block chain

¹Mainly Africa but Schwarzwald/Eifel/Sauerland is also ok.


Will my Sensor work at a certain distance?!

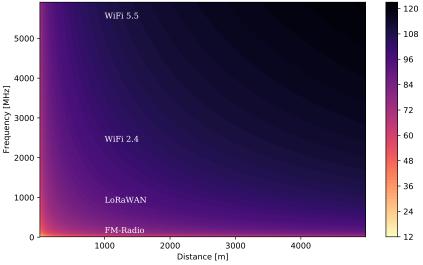
Wireless communication


Wireless communication is the **transfer of information between two or more points**, that are not connected by an electrical conductor, using **modulated electromagnetic waves**.

- Important effects:
- Free-Space Path Loss
- Reflection
- Diffraction
- Earth curvature
- Weather conditions

- Vertical: Electric field is \perp to earth's surface.
- Horizontal: Electric field is || to earth's surface.

The FSPL equation

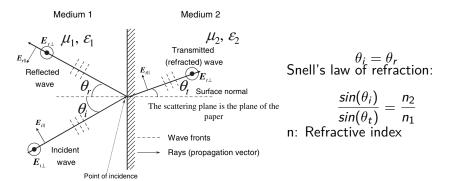

Free-Space Path Loss (FSPL)

The loss in signal strength of an electromagnetic wave that would result from a Line of Sight (LoS) path through free space (usually air), with **no** obstacles nearby to cause **reflection** or **diffraction**.

$L_f[dB] = 20 * log_{10}(f_{MHz}) + 20 * log_{10}(d_{km}) + 32.4dB$

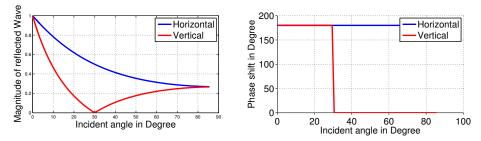
Comparison of FSPL for different frequencies

FSPL in [dB] vs Distance vs Frequency

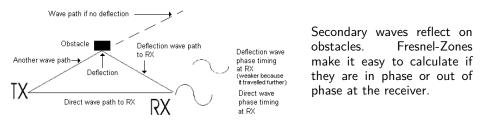

Ever wondered why lower frequencies are so expensive?

Reflection

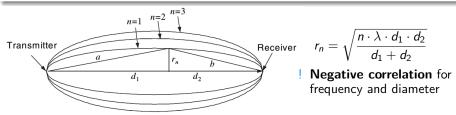
Reflection


Reflection occurs when propagating electromagnet waves impinges upon an object which has very large dimensions when compared to the wavelength of the propagation wave [1].

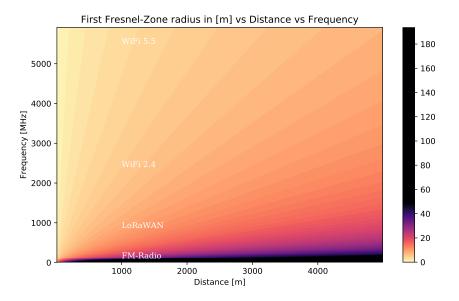
- Two different things occur (depending on the reflection coefficient):
 - A certain amount of power is reflected. The phase sometimes changes.
 - A certain amount of power is refracted into the medium.


Reflection coefficent r

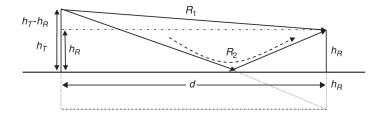
- ▶ The reflection coefficient is a complex number depended on [2]:
 - The polarization
 - The angle of incidents
 - Some medium characteristics (conductivity, ...)
 - The frequency
- ► The ITU-R [3] provides medium factors for different types of ground


Reflection with different incident angles at 5.5 GHz, dry ground

Fresnel-Zones: A simplification for reflection.

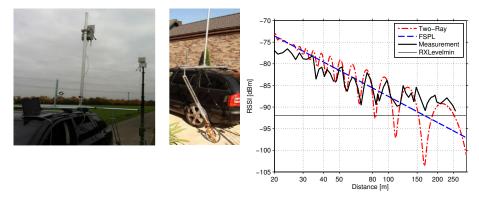


Fresnel-Zones


Fresnel-Zones are described as successive regions where secondary waves have a path length from the transmitter to receiver which are $n\lambda/2$ greater than the total path length of a LOS path [4].

Comparison of Fresnel zone radius

Two-Ray-Model: Assuming significant ground reflections

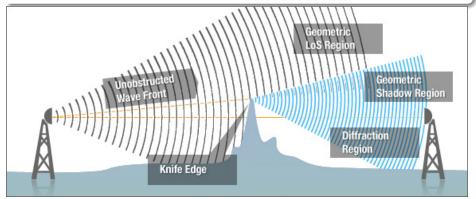


$$(R_2 - R_1) = \sqrt{(h_T + h_R)^2 + d^2} - \sqrt{(h_T - h_R)^2 + d^2} \approx \frac{2h_T h_R}{d}$$

$$A_{total} = A_{direct} + A_{reflected}$$

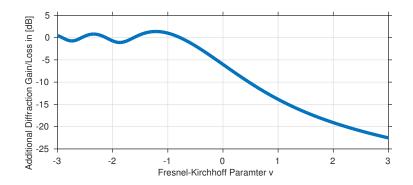
• under the assumption of small angles $r \approx -1$ (proof in the appendix) $\frac{P_R}{P_T} = 2 * \left(\frac{\lambda}{4\pi d}\right)^2 \left[1 - \cos\left(\frac{2\pi f}{c}\frac{2h_T h_R}{d}\right)\right]$

Some Research: Verification of the Two-Ray-Model [5]


Omni-directional antennas mounted on the bottom of the outdoor-enclosures

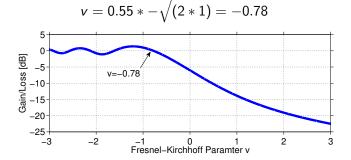
Results; Frequency: 5180. Polarization: Horizontal. Conductivity (δ): 0.125 S/m. Relative permittivity (ϵ_r): 5

- Omni: The Two-Ray-Model fits better than FSPL
- Directional: More complex due to antenna diagram


Diffraction

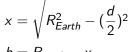
A radio wave that meets an obstacle has a natural tendency **to bend around the obstacle** (The Huygens - Fresnel-Principle). The bending, called diffraction, results in a change of direction of part of the wave energy from the normal line-of-sight path.

Diffraction: A simple example

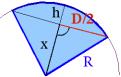

Fresnel-Zones: A simplification for diffraction

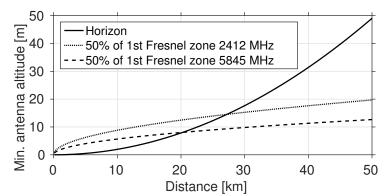
Rule of thumb: A link is free of diffraction if 55% of the first Fresnel-Zone are free of obstacles

Fresnel-Kirchoff Parameter different Fresnel-Zones:

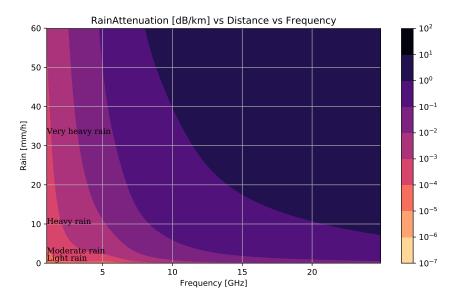

$$v = h\sqrt{\frac{2*(d_1+d_2)}{\lambda*d_1*d_2}} = -\sqrt{\frac{n*\lambda*d_1*d_2}{d_1+d_2}} * \sqrt{\frac{2*(d_1+d_2)}{\lambda*d_1*d_2}} = -\sqrt{2n}$$

Determine v for 55 % of the 1st Fresnel-Zone.




Additional influences: Earth Curvature

- The earth is not a flat surface but rather a sphere (surprise)
- The horizon influences the minimum antenna altitude



$$h = R_{earth} - x$$

Additional influences: Weather conditions

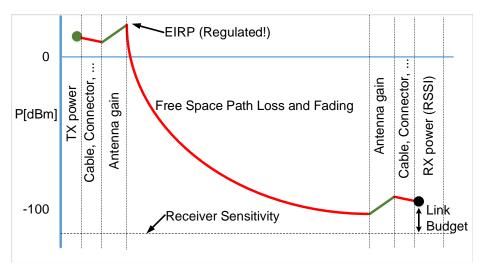
	Main construction	Isolation material	Windows	900 MHz			2100 MHz		
	material			5%	Average	95%	5%	Average	95%
House 1	Wood	Polyurethane (aluminum)	3-layered	12.0	13.3	18.8	22.0	24.0	28.0
House 2	Wood	Mineral wool	3-layered	4.7	5.2	6.8	7.0	8.9	9.5
House 3	Rock	Styrofoam	3-layered	14.0	14.3	15.8	16.8	20.5	21.4
House 4	Wood	Polyurethane (aluminum) (x2)	4-layered	16.3	17.6	18.0	22.3	23.8	26.6
House 5	Wood	Polyurethane (aluminum)	Wood panel	7.0	7.8	11.0	4.9	9.9	15.0
House 6	Wood	Mineral wool	3-layered	0.0	1.3	4.4	12.0	11.4	10.2
House 7	Wood	Glass wool	4-layered	1.0	3.2	5.5	4.7	9.1	8.3
House 8	Wood	Glass wool	3-layered	2.5	2.7	6.0	8.0	10.2	11.4
House 9	Masonry block	-	3-layered	15.2	15.5	15.0	18.7	19.5	21.2
House 10	Brick	Polyurethane (aluminum)	3-layered	19.2	21.4	23.0	25.3	24.9	26.1
House 11	Brick	Styrofoam	3-layered	18.8	17.9	16.8	22.9	19.0	16.7
House 12	Wood	Polyurethane (aluminum)	3-layered	11.0	12.9	16.0	18.9	20.9	21.1
House 13	Wood	Polyurethane (aluminum)	3-layered	8.5	9.2	11.0	16.6	12.5	9.3
House 14	Rock	-	3-layered	16.0	15.9	16.2	24.8	23.5	21.4
House 15	Wood	Mineral wool	3-layered	5.7	6.6	7.5	5.4	8.6	11.0

Source: [6]

Example using SPLAT!

- SPLAT (http://www.qsl.net/kd2bd/splat.html)
- Free Data from the Shuttle Radar Topography Mission (SRTM)

Point-To-Point Link examples



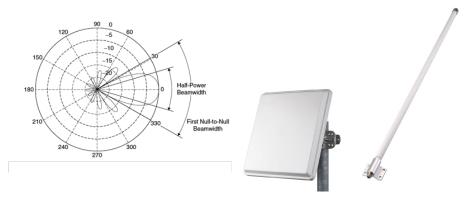
University of Applied sciences Bonn-Rhein-Sieg to Lohmar Birk 5 GHz

SPLAT! Path Profile Between HBRS-A and THCologne (316.01° azimuth) With First Fresnel Zone ialized Height Referenced To LOS Path Betwe HBRS-A and THCologne (meters) Point-to-Point Profile 70 Line of Sight Path arth's Curvature Contour 65 resnel Zone (5600.000 MHz) First Fresnel Zone 60 55 50 45 40 35 10 15 20 Distance Between HBRS-A and THCologne (21.60 kilometers)

University of applied sciences Bonn-Rhein-Sieg to Technische Hochschule Cologne 5 GHz

Link Budget - Will I be able to receive something?

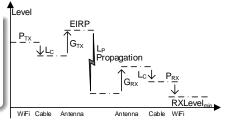
 $P_{RX} = P_{TX} - L_{C,TX} + G_{TX} - L_{P}(f, d) + G_{RX} - L_{C,RX} >> RXLevel_{min}$


Cables = Attenuation

Cables and **connectors** operating at high frequencies lead to non-negligible attenuation.

- Important factors:
- Price
- Frequency: The higher the frequency the higher the attenuation
- Length (keep as short as possible)

Frequency [GHz]	1	1.5	2	2.5	3	4	5	6
Aircell 7 [dB\100 m]	21,5	27,1	31,9	35,6	40,1	49,1	57	65
Satec RF-10 [dB\100 m]	12,3	15,3	18,0	20,6	/	27,3	/	/


Important: Impedance, Polarization, Antenna Gain,3 dB Beamwidth

Example Antenna	Frequency [GHz]	Gain	beamwidth
0,868 GHz: WiMo	0,860-0.867	5 dBi	38°v;360°h
5 GHz: Grid	4,9 -6,0	30 dBi	5°v;6°h (3 dB)

Equivalent Isotropic Radiated Power

EIRP

Is the amount of power that a **theoretical isotropic antenna** (which evenly distributes power in all directions) would emit to produce the peak power density observed **in the direction of maximum antenna gain**.

Vfg 30/2014, geändert mit Vfg 36/2014, geändert mit Vfg 69/2014

Allgemeinzuteilung von Frequenzen zur Nutzung durch Funkanwendungen mit geringer Reichweite für nicht näher spezifizierte Anwendungen; Non-specific Short Range Devices (SRD)

868,0 - 868,6 25 mW	Es sind Frequenzzugangs- und Störungsminderungstechniken einzusetzen, deren Leistung mindestens den Techniken entspricht, die in den gemäß Richtlinie 1999/5/EG bzw. des FTEG verabschiedeten harmonisierten Normen vorgesehen sind. Alternativ kann ein maximaler Arbeits- zyklus ³⁷ von 1% verwendet werden.	Keine analogen Videoanwendungen
---------------------	---	------------------------------------

Transceiver and Modulation - General

Modulation

- Mapping of a digital signal (data) to an RF signal [7]
- FM, AM, PM, and a combination of all.
- Transceiver
 - TXpower
 - RXLevel_{min} = Sensitivity
- 1 0 1 0 1 0 1 0

Amplitude modulation

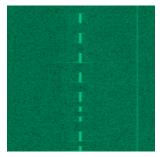
Frequency modulation

Phase modulation

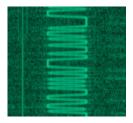
Modulations time domain [7]

Semtech LoRa SX1272

Spectrogram


Time

Spectrogram


Frequency

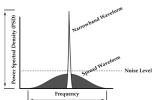
Power (z-axis)

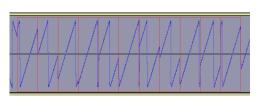
Different modulations examples

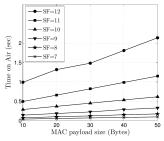
On-Off-Keying [7]

Frequency-Shift Keying [7]

LoRa - Chirp Spread Spectrum


• Spread Spectrum is great for low SNR's $(\frac{S}{N})$


$$\bullet \ C = B * \log_2(1 + \frac{S}{N})$$


- A chirp is a signal whose frequency increases or decreases over time
- Data is modulated on these chirps!
 - Bandwith: 125 kHz, 250 kHz, 500 kHz
 - Spreading Factor (SF): 7... 12 bits per symbol (symbol=chirp)

• Duration of a symbol:
$$T_S = \frac{2^{ST}}{BW}$$
 [8]

- Useful bit rate: $R_b = SF * \frac{B\overline{W}}{2^{SF}} * CR$ [8]
- Receiver sensitivity: $RXLevel_{min} = -174 + 10 * log_{10}(BW) + NF + SNR$

#	Spreading factor	Channel width, kHz	Code rate	PHY bit rate, bps	RF sensitivity, dBm
0	12	125	4/6	250	-137
1	11	125	4/6	440	-136
2	10	125	4/5	980	-134
3	9	125	4/5	1760	-131
4	8	125	4/5	3125	-128
5	7	125	4/5	5470	-125
6	7	250	4/5	11000	-122

[10]

[9]

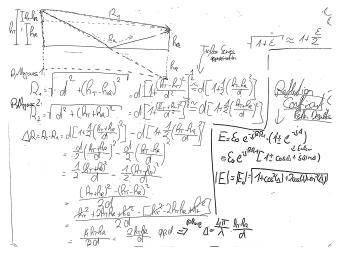
- Airtime in magnitude of SECONDS
- Duty cycle

- SF: Trade throughput vs. range
- SF's are orthogonal
- BW: Trade throughput vs. range

LoRa link budget example

Spreading Factor	12	9	7			
Transmitter:						
<i>P_{TX}</i> [dBm]	12	12	12			
<i>L_{C,TX}</i> [dB]	1	1	1			
G _{TX} [dBi]	2	2	2			
EIRP [dBm]	14	14	14			
Receiver:						
G _{RX} [dBi]	1	1	1			
L _{C.RX} [dB]	1	1	1			
RXLevel _{min} [dBm] (125 kHz)	-137	-131	-122			
Path 15 km:						
FSPL [dB]	115	115	115			
Link Budget:						
RXLevel _{pred} [dBm]	-101	-101	-101			
Link Budget	36	30	21			

Caution: Outdoor Free-Space \neq Reality


Thank your for your attention. Are there any questions left?

- ▶ Feel free to drop me a mail or visit me at H-BRS (C162):
- michael.rademacher@h-brs.de
- More about our work:
- https://www.researchgate.net/profile/Michael_Rademacher
- Links:
- SPLAT: http://www.qsl.net/kd2bd/splat.html
- NASA-Data: https://e4ft101.cr.usgs.gov/SRTM/SRTMGL1.003/2000.02.11/
- Lora-Talk: https://media.ccc.de/v/33c3-7945-decoding_the_lora_phy

References I

- V. Garg, Wireless Communications and Networking. Morgan Kaufmann, 1. ed., 2010.
- [2] L. W. Barclay, Propagation of Radiowaves. Stevenage: IET, 2. ed., 2003.
- [3] ITU-R, "ELECTRICAL CHARACTERISTICS OF THE SURFACE OF THE EARTH," Recomm. ITU-R P.527-3, vol. 1, pp. 1–5, 1992.
- [4] T. S. Rappaport, "Wireless Communications: Principles and Practice," 2002.
- [5] M. Rademacher, M. Kessel, K. Jonas, and S. Augustin, "Experimental Results For the Propagation of Outdoor IEEE802.11 Links," VDE ITG-Fachbericht Mobilkommunikation, vol. 22, 2016.
- [6] "Radio signal propagation and attenuation measurements for modern residential buildings," pp. 580-584, IEEE, dec 2012.
- [7] M. Knight, "Decoding the lora phy dissecting a modern wireless network for the internet of thing," 2017. 33c3.
- [8] A. Augustin, J. Yi, T. Clausen, and W. Townsley, "A Study of LoRa: Long Range & Low Power Networks for the Internet of Things," Sensors, vol. 16, p. 1466, sep 2016.
- [9] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia, and T. Watteyne, "Understanding the limits of LoRaWAN," IEEE Commun. Mag., vol. 55, no. 9, pp. 34–40, 2016.
- [10] D. Bankov, E. Khorov, and A. Lyakhov, "On the limits of LoRaWAN channel access," Proc. 2016 Int. Conf. Eng. Telecommun. EnT 2016, pp. 10–14, 2017.

Appendix: Proofs I

Path difference

Appendix: Proofs II

I for all four insublar Misky = to n= The R. One Modium is fue spane. $\int_{\Pi} = \frac{\sum_{r \in \mathcal{S}_{h}} (g_{r}) + \overline{\sum_{r \in \mathcal{S}_{h}} (g_{r})^{T}}}{\sum_{r \in \mathcal{S}_{h}} (g_{r}) + \overline{\sum_{r \in \mathcal{S}_{h}} (g_{r})^{T}}} / \int_{\Pi} \int_{\Pi} = \frac{\sum_{r \in \mathcal{S}_{h}} (g_{r}) - \overline{\sum_{r \in \mathcal{S}_{h}} (g_{r})^{T}}}{\sum_{r \in \mathcal{S}_{h}} (g_{r}) + \overline{\sum_{r \in \mathcal{S}_{h}} (g_{r})^{T}}} / \int_{\Pi} \int_{\Pi$ Observation: Two Factors Dongle of incodence 2) &-Let di => los distance Coluen the bo 0 -18-1

Constant R

Appendix: Proofs III

 $\frac{P_{R}}{P_{T}} = \left(\frac{\lambda}{2\pi d}\right)^{2} + \left|1 + Re^{\int k \cdot \frac{2k_{T}k_{R}}{d}}\right|^{2}$ $G = \left(\frac{\lambda}{2\pi d}\right)^{2} \quad \alpha = k \cdot \frac{2k_{T}k_{R}}{d} \quad R = .1$ $\frac{P_R}{P_T} = 6 \left[1 - e^{S^{\alpha}} \right]^2 = (e^{S^{\alpha}} - e^{S^{\alpha}}) + (e$ $\frac{P_{R}}{P_{T}} = \frac{C}{1 - \cos(6) + \sin(6)}^{2} + \frac{1}{1 + \frac{1}{2}} + \frac{2}{1 + \frac{2}{2}}^{2}$ $= B \cdot ((1 - \cos(a))^2 + \sin^2(a^2))$ = $(1 - 2\cos(\alpha) + \cos^{2}(\alpha) + \sin^{2}(\alpha))$ = $(1 - 2\cos(\alpha)) = 2(1 - \cos(\alpha))$ $\left(1 - \cos\left(k \cdot \frac{2k\tau^2 k_R}{d}\right)\right)$

Two Ray Proof