
Automatic Temporal Segmentation of
Articulated Hand Motion

Katharina Stollenwerk1, Anna Vögele2, Björn Krüger3,
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Abstract. This paper introduces a novel and efficient segmentation
method designed for articulated hand motion. The method is based on a
graph representation of temporal structures in human hand-object inter-
action. Along with the method for temporal segmentation we provide an
extensive new database of hand motions. The experiments performed on
this dataset show that our method is capable of a fully automatic hand
motion segmentation which largely coincides with human user annota-
tions.

1 Introduction

Motion Capture has become a standard technique for motion data recording in
the past decades. Easy access to improved and relatively low-cost systems makes
motion capture possible to a wider community and for numerous applications.

There is an increased focus on recording facial movement and hand gestures,
since both are significant parts of communication and daily life. Recent work
([1, 2]) has brought to attention the importance of correctly-timed hand motions
and details in face and hand movement.

There is a need for high quality data in order to enable both motion analysis
and synthesis. Recent technologies allow for fast capturing of highly resolved
motion data [3–5]. However, in order to make use of the recordings, appropriate
tools for data processing are needed. The segmentation of motions into simple
data units is a crucial step in processing [6]. Recent developments of segmentation
methods produce good results for full-body motion [6, 7]. Our goal is presenting
techniques which work for gestures and grasping and are similarly efficient as
the above-mentioned. We introduce a method for temporal segmentation of hand
motions which enables the isolation of primitive data units. We show that these
units coincide with perceptive motor primitives by comparing the results to those
which have been manually segmented by different users. Moreover, we discuss a
method for clustering the motion segments achieved by the segmentation, thus
resulting in a compact representation of hand motion.

The main contributions of this paper are:



– A database of hand motions
– A technique for fully automatic and accurate segmentation
– A method to cluster segments

The remainder of this paper is organised as follows. Section 2 gives an
overview of the work related to temporal segmentation and processing of hand
motion. Our recording setup and the database that our experiments are based
on are described in Section 3. Section 4 introduces the segmentation technique.
Section 5 discusses our clustering approach. Finally, an evaluation as well as a
comparison to other segmentation approaches are presented in Section 6.

2 Related Work

Hand Motion Capturing Possibilities for capturing finger motion data include
marker-based optical and image-based video tracking with or without depth
information as well as glove-based systems with or without tactile sensors. An
overview of the main approaches also covering advantages and drawbacks of the
respective techniques was surveyed by Wheatland et al. [8].

Current approaches combine multiple capturing methods to overcome limita-
tions of individual techniques. Zhao et al. [3] describe how to record high-fidelity
3D hand articulation data with a combination of an optical marker-based mo-
tion capture system and a kinect camera. Arkenbout et al. [9] integrate a 5DT
Data Glove into the kinect-based Nimble VR system using Kalman filter. This
resolved visual self-occlusion of the hand and fingers and improved precision and
accuracy of the joint angles’ estimates. Ju and Liu [10] capture joint angle data,
finger and hand (contact) force data and sEMG data of forearm muscles in order
to study correlations of different sensory information.

This variety of sensor fusion for capturing hand motions indicates that the
acquisition of high-quality hand motion data has not yet been satisfactorily re-
solved. All of the above mentioned approaches point out that they are increasing
the quality of the recorded data. Nevertheless, we have decided to only use a
CyberGlove data glove as, on the one hand, it was not important that the user’s
hand is unencumbered and on the other hand we believe that the main challenge
in recording hand motion and manipulation data is occlusion from an object or
the hand itself, both of which are handled effortlessly by a data glove.

Databases While there are a number of high-quality, full-body motion capture
databases that can be used for academic purposes (e.g. the CMU and HDM05
motion capture databases [11, 12]), only a few such data collections exist for
articulated hand motions.

In the field of robotics, Goldfeder et al. [13] presented algorithms for auto-
matic generation of a database of precomputed stable grasps, i.e. a single pose,
for robotic grasping. This resulted in The Columbia grasp database which con-
tains computed grasp configurations of different (robotic) hands along with a
set of graspable objects. Thus, the database only contains single-hand poses and
no finger movements. Feix et al. [14] provide a small dataset of human grasping



used as a basis for evaluation of the motion capabilities of artificial hands. The
dataset contains 31 motions, each performed by five subjects twice. The motion
data contains only the 3D position and orientation of each fingertip with no in-
formation on the specific underlying hand model. Notable also due to its size, the
NinaPro database [15] contains 52 full-hand and wrist motions collected from 27
subjects. The data recorded consists of surface electromyography (sEMG) data
together with the 8-bit valued raw output of a 22-sensor CyberGlove (kinematic
data). The 8-bit valued raw kinematic recordings of each sensor only roughly
represent joint angles and fail to account for cross coupled sensors in the Cyber-
Glove.

Segmentation and Re-Use of Motion Capture Data Manual segmentation and
annotation of motion data into meaningful phases is a tedious and daunting
task. But it is segmentation and annotation that makes the data re-usable.

For full-body motion data, unsupervised, temporal segmentation techniques
have been developed. Among them is the work of Beaudoin et al.’s [16] who focus
on visualising the structure of motion datasets. They propose to partition motion
data streams into motion-motifs organised in a graph structure useful for mo-
tion blending and motion data compression. Zhou et al. [17, 7] segment human
motion data based on (hierarchical) aligned cluster analysis (H(ACA)). They
frame the task of motion segmentation as temporal clustering of (motion cap-
ture) data into classes of semantically-similar motion primitives. Min and Chai’s
Motion Graph++ [18] is not only capable of segmenting motions into basic mo-
tion units, but also of motion recognition and synthesis. Their segmentation
automatically extracts keyframes of contact transitions and semi-automatically
extracts keyframes exhibiting salient visual content changes. Vögele et al. [6]
employ (backward and forward) region growing in order to identify start and
end frames of activities (groups of motion primitives). These activities are split
into motion primitives by taking advantage of how repetitive activity patterns
manifest in self-similarity matrices (SSSM). Recently, Krüger et al. [19] further
improved the outcomes of [6] by aligning and grouping segregated feature tra-
jectories and exploiting the symmetric nature of motion data.

For temporal segmentation of captured hand motion data, we have mainly
found motion streams of conversational hand gestures to have been automatically
segmented into different phases and synthesised into new motions, often based on
an accompanying audio stream. Examples thereof include Levine et al. [20], Jörg
et al. [2] and Mousas et al. [21] who solely use features derived from the wrist
joint’s position over time for segmentation into gesture phases. While the first
two works synthesise new gestures based on the whole hand at once, the authors
of the last paper estimate finger motion separately for each finger. The estimation
is limited to adjusting frame times for creating optimally timed transitions.

There is little published on temporal segmentation of hand motion data;
no research has been found that analysed automatic or unsupervised segmenta-
tion of such data. For robot programming and teaching from example in, e.g.
pick and place scenarios, researchers have looked into temporal segmentation of
recorded human hand and finger motions. This is often needed to characterise



grasp phases (e.g. pre-grasp, grasp, manipulation). However, usually this infor-
mation is included only implicitly in models used for grasp classification: Ekvall
and Kragic [22], for instance, classify grasp movements using 5-state HMMs
for grouping fingertip positions and transitions. A noteworthy exception is the
work of Kang and Ikeuchi [23]. They segment prehensile movements of a human
demonstrator using motion profiles and volume sweep rates. Their presented re-
sults, however, are limited to two segmented exemplary motion sequences with-
out specification of reference data or ground truth data. In the area of computer
animation, Zhao et al. [24] combined recorded 3D hand motion capture data of
ten different grip modes and physics-based simulation with the aim of achiev-
ing physically-plausible interaction between a hand and a grasped object. Each
motion was then manually segmented into three phases: reaching, closing and
manipulation, the last of which is assumed to be a static pose. From their paper,
it is unclear whether the grasping motion data was recorded from interacting
with a real or a virtual object.

3 Database

To the best of our knowledge there still is no database of articulated human
hand motions covering a wide variety of actions and actors usable for motion
analysis and data-driven synthesis. We therefore decided to create one.

We chose to include two main setups in the database: Uncontrolled trans-
port and controlled transport, both of which will be described below. To ensure
inter-person consistency in the recording setups and for later reproducibility, a
protocol was written detailing each step of the recording. The setups can be
summarised as follows:

In uncontrolled transport, each person is presented with a variety of objects
in random order with no object being presented twice in a row. The task is to
pick up the object, move it to a different location, and put it down. The setup
was designed in order to obtain a high diversity of possible grasps per object.
Each object had to be moved five times. In controlled transport each person is
again presented with a variety of objects. The task is to pick up the object,
move it to a different location, and put it down. Only here, a picture illustrates
how to hold the object during transport and the task has to be executed five
consecutive times on each object. Contrary to the first setup, the focus here lies
on reproducing consistent, predefined grasp motions.

In all setups the hand was placed flat on a table before and after task execu-
tion. The data were recorded at an acquisition rate of 60[Hz] using an 18-sensor
right-hand ImmersionSquare CyberGlove as depicted in Figure 1. Each hand
pose (a set of 18 data points per sample) is represented by a joint angle config-
uration of the joints in each finger, wrist and palm.

Choice of Grasp Types in Controlled Transport Several fields of research (e.g.
biomechanics, robotics, medicine) have introduced grasp taxonomies for group-
ing different grasps by common criteria seeking simplification of the hand’s com-
plex prehensile capabilities. Due to the wide range of application and a resulting



(a) Objects in the database (b) CyberGlove (c) Grasping a tennis ball

Fig. 1. (a) Objects used for grasping: classic notebook, oval jar, tennis ball, mug, cube,
bottle crate, small cylinder, pen, bottle, glass, business card, bowl, cylinder large, carton
(7.6 × 26 × 37.5[cm3]). Objects in red were used in controlled transport.

lack of consensus in naming and classifying grasp types Feix et al. [25, 26] col-
lected and consolidated the vast amount of grasp examples found in literature.
Their taxonomy comprises 33 grasp types grouped into 17 basic types by merging
equivalent grasps. The chosen taxonomy defines a grasp as a static configuration
of one hand able to securely hold an object (in that hand). This explicitly rules
out intrinsic movements in the hand during grasp, bi-manual interaction and
gravity-dependent grasps such as an object lying in equilibrium on a flat hand.

Out of the list of 17 basic grasp types we have chosen to cover 13, omitting
speciality configurations such as holding chopsticks (tripod variation), a pair of
scissors (distal type), a cigarette between index finger and middle finger (abduc-
tion grip), and holding a lid of a bottle after unscrewing it (lateral tripod). Some
of the basic grasp types were covered more often, hence extending the number of
grasp types to 25 also using different sized objects. For a complete list of grasps
and objects used for controlled transport see Table 1 and Figure 1.

Table 1. List of grasps in controlled transport grouped by basic grasp type. It includes
the grasp type’s number and name based on Feix et al. [25] and the objects grasped.

No Name Object grasped

1 large diameter bottle (8cm diameter)
2 small diameter cylinder 25mm diameter
3 medium wrap bottle crate

10 power disk lid of jar (7cm diameter)
11 power sphere tennis ball (64mm diameter)

31 ring glass (6cm diameter)

28 sphere 3 finger tennis ball (64mm diameter)

18 extension type classic notebook (15mm thick)
26 sphere 4 finger tennis ball (64mm diameter)

9 palmar pinch business card
33 inferior pincer tennis ball (64mm diameter)

8 prismatic 2 finger cylinder 10mm diameter
14 tripod bottle at cap (3cm diameter)

No Name Object grasped

7 prismatic 3 finger cylinder 10mm diameter
27 quadpod tennis ball (64mm diameter)

6 prismatic 4 finger cylinder 10mm diameter
13 precision sphere tennis ball (64mm diameter)

20 writing tripod pen (2cm diameter)

17 index finger extension cylinder 25mm diameter

4 abducted thumb cylinder 25mm diameter
15 fixed hook bottle crate
30 palmar classic notebook (15mm thick)

16 lateral business card
32 ventral cylinder 25mm diameter

22 parallel extension classic notebook (15mm thick)



The final database contains approximately 2000 grasp motions of ten different
persons interacting with 15 different objects represented by 25 grasp types (13
basic grasp types). Each motion is annotated with the object that was grasped
and – for controlled transport – the grasp type that was used.

4 Segmentation Approach

We present a novel method for temporal segmentation of articulated hand mo-
tion. Since our method is related to techniques in image processing on self-
similarity adjacency matrices, it belongs to the same category of methods as the
technique introduced in [6] on segmentation of full-body motion. However, there
is a specific focus on the demands of hand motion segmentation.

In the following subsections, the process is outlined by discussing pre-processing
and feature computation, segmentation, and merging.

4.1 Pre-processing

A motion consists of a sequence of n frames each containing a hand pose pi, i =
1, . . . , n which itself is encoded in a feature vector fi = (fij )j=1..N , of dimension
N . The feature vector used for our segmentation method consists of the frame-
based positions in IR3 inferred from the outermost recorded joint in each finger
and thumb (i.e. the thumb’s tip and other fingers’ distal interphalangeal joint)
with respect to the position of the wrist joint. These positions are derived from
the recorded angle data by defining a schematic hand model as depicted in
Figure 4. For each frame the recorded joint angles are mapped onto the model
hand yielding 3D positions for the joints.

In order to convey temporal information in a single feature vector and to
emphasise motion consistency over a certain period of time, features are stacked
in the time domain. This leads to a vector [fi−t1 , fi, fi+t2 ] of features where fi−t1
is temporally located t1 frames before fi and fi+t2 is t2 frames after fi.

4.2 Segmentation

The segmentation process can be broken down into two main stages: construction
of the local neighbourhood and identification of primitive data units.

The local neighbourhood of a pose pi is the set Si of nearest neighbours of
pi. We construct the local neighbourhood based on the Euclidean distance dij
between pairs of feature vectors (fi, fj) of hand poses pi and pj and a predefined
search radius r. The search radius is a constant R depending solely on the
dimensionality N of the feature vector, r = R ·

√
N . A pose pj is added to

the set of neighbours of pi if dij is below r. This can be efficiently achieved by
building a kd-tree from all feature vectors and reporting the subset of vectors
located within the search radius r for each feature vector fi (representing pose
pi). As a result we obtain a set Si of nearest neighbours for each pose pi.
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(a) SSSM (b) Main contour (c) Computed segments (d) Reference segments

Fig. 2. Overview of results of the steps in our segmentation method. The main contour
in (b) is divided into its upper (red) and lower (green) part.

These sets are subsequently converted into a sparse self-similarity matrix
(SSSM). In our case, this matrix holds the pairwise distances dij for all pairs
of poses pi, pj of all sets Si (see Figure 2). The SSSM can thus be divided into
populated regions representing pairs of poses, that are within the search radius
(greyscale regions in Figure 2), and empty regions in which the pairwise pose
distance is outside the search radius (blue regions in Figure 2).

Hands, during the grasp phase, do not exhibit major intrinsic movements.
This is reflected by a large set of local neighbours and (were it ideal data)
expressed in the SSSM by a square region along its main diagonal. We exploit this
fact for identification of primitive data units and search for square-like shapes
along the main diagonal of the matrix. To this end, we first extract start and
end indices, tsi and tei i = 1, . . . , n, of populated regions along the diagonal
of the SSSM in a row-wise fashion. For each new index tj we ensure that the
sequence found up to tj is monotonically increasing, i.e. tj ≥ tj−1 ∀ j ≤ i.
That way the two index sequences each form a path contouring the upper and
lower (list of end and start indices) populated region along the diagonal of the
SSSM (Figure 2 (b)). This contour does not contain any neighbour outside of
the defined search radius.

In the following step, the sequence of end indices is inspected for signifi-
cant increases, noting the end index tei and the row i in which this increase
occurrs as interval boundaries [i, tei ]. An increase is considered significant if it
is larger than a fixed parameter B, the ignoreband. The list of start indices is
processed similarly, traversing it from back to front and seeking significant de-
creases. Eventually, this will result in two preliminary lists of intervals marking
candidate primitive data units (rests and grasps) in the motion.

4.3 Merge Step

As we have posed only few constraints on finding square-like shaped segments
in the SSSM there is sometimes a significant overlap of the preliminary seg-
ments which were identified. While minor overlaps merely illustrate that the
fixed search radius is too high to separate two distinct structures blending into
each other, a large overlap may show that the search radius is too low, causing a
single structure to split into two. To remedy the latter, we merge segment inter-



vals in each list of preliminary segments if they overlap one another by more than
half their widths. Lastly, the two lists of merged preliminary segment intervals
are merged into one list under the previously mentioned condition. Here, we will
keep every interval that existed in both lists. This may also have resulted from
merging intervals from both lists into one bigger segment.

The final list of segments contains intervals representing phases of rests and
grasps. The phases inbetween two consecutive segment intervals contain the
motion transitioning from the one segment into the next.

In our extended version of the merge step, we additionally reproject candidate
intervals from a merge back into the SSSM and check if the region covered by
the corresponding square is populated by at least 95%. We only perform the
merge if it does. An exemplary result from the segmentation and merge step is
displayed in Figure 2 (c).

5 Clustering Approach

Once a set of motion trials has been segmented into primitive data units by
extracting square-like regions from the main diagonal of a SSSM, we can group
similar segments and moreover group similar motions within the set of trials.

5.1 Clustering of Primitives

Primitive data units are represented by squares along the main diagonal of a
SSSM. Looking more closely at the populated areas in the SSSM, we find an
interesting structure mainly consisting of off-diagonal blobs. These blobs indicate
similarity between motion segments (see Figure 2). We will avail ourselves of this
structure for clustering motion segments based on their similarity with respect
to segment area coverage and path coverage, respectively, which are described
below.

Consider a set of motion trials segmented into primitive data units I =
I1, . . . , IK . In order to keep track of pairwise similarities within I, we build a
similarity graph GI . Each primitive Ik, k = 1, . . . ,K, is associated with one node
in a similarity graph GI . Two nodes Iv, Iw will be connected by an edge if they
are considered similar (based on the similarity measures described below). The
final graph will consist of several strongly connected components representing
clusters of similar types of primitive data units.

As the segmentation is performed per motion trial, but clustering is aimed
at inter-trial comparison of primitive data units, we have to construct the local
neighbourhood for each pair of primitives. The comparison of the primitives is
based on the resulting sets of local neighbours which, for clustering, are not
further converted into a SSSM.

Segment Clustering by Segment Area Coverage A simple straightforward
approach for comparing primitive data units uses the area covered by each off-
diagonal blob restricted to the range of the compared primitives in their SSSM.



If this area is sufficiently covered/populated, we add an edge between the nodes
representing the compared primitives. This approach, however, is incapable of
representing a temporal alignment of the segments needed for re-use of the data
in, e.g. motion synthesis. Also note that while the SSSM here is immensely
useful for explaining the underlying concept of this approach, we in fact count
the number of nearest neighbours in each of the relevant sets.

Segment Clustering by Path Coverage A classical way of searching for
the best temporal alignment of two time series Q = {q1, . . . , qN} and V =
{v1, . . . , vM} is dynamic time warping (DTW). The alignment is given as an
optimum cost warping path PQ,V between Q and V . A path PQ,V of length L
is constituted by a sequence π = {π1, . . . , πL} of index pairs πl = (nl,ml) ∈
[1, N ]× [1,M ] ⊂ IN× IN for l ∈ [1, L] ⊂ IN into Q and V subject to constraints
such as qnl

≤ C · qnl+1
and vml

≤ C · vml+1
thus limiting the path’s slope.

This kind of motion matching has been elegantly solved by Krüger et al. [27]
using the sets of local neighbours in a neighbourhood graph. They represent
subsequence DTW as kd-tree-based fixed-radius nearest neighbour search in the
motions’ feature set. For details see [27].

We compute the warping path for each pair of motion segments. Such a path
is considered to be valid if it sufficiently covers the segments and does not fall
below a certain length. If we find a valid warping path between two segments
we record this information in the graph GI by adding an edge between the two
nodes representing the compared primitives.

This algorithm was adapted from Krüger et al. [19] and Vögele et al. [6].

5.2 Clustering of Motion Sequences

After clustering of the segments, we are able to represent each trial by a sequence
of IDs. Each ID represents a specific cluster of primitive data units. These se-
quences of IDs are subsequently used to group similar motion trials: First, each
motion trial’s sequence of IDs is processed such that it is free from successive
identical IDs, e.g. 11123331 becomes 1231. For all pairs of sequences we compute
their weighted longest common subsequence (LCS), i.e. we divide the pairwise
LCS by the minimum length of the compared sequences. Based on this similarity
measure, motion trials are grouped into final motion trial clusters.

Finally, each cluster is assigned to the class of the motion trial occurring
most frequently in the cluster. Clusters containing exactly one motion trial will
be disregarded and later counted as being unidentified.

6 Results

This section summarises achieved results for segmentation and clustering. We
will start with an evaluation of different values for the two important segmen-
tation parameters. Subsequently, we will compare our segmentation approach
with the method proposed by Vögele et al. [6]. Concluding this section we will
present results from clustering found motion segments.
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Fig. 3. Results of the parameter evaluation with
respect to the presented segmentation quality
measures. Search radius constant was plotted
against ignoreband without (each left) and with
(each right) reprojecting candidate intervals from
merges. The optimum value for overlap union ra-
tion is 1.0 and for cut localisation 0.0.
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pophalangeal joint (MCPJ), car-
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6.1 Parameter Evaluation

The parameter space of the discussed method is determined by the search radius
constant R and the ignoreband B. In our evaluation, we have iterated over both
values with respect to the two different quality criteria, overlap union ration and
cut localisation, which our segmentation evaluation is based on. The results are
given in Figure 3. Each parameter has a separate contribution in the overall seg-
mentation results as the search radius is responsible for the structure of the sets
of local neighbours, and hence determines the structure of populated and empty
regions in the SSSM. The ignoreband has a major influence on the minimum
detectable segment interval width.

The results demonstrate that the method performs well for a range of pa-
rameters, i. e. for R ∈ [3.5, 5.5] and B ∈ {2, 3, 4, 5, 6}. Based on optimisation in
this parameter space we have chosen R = 4.25 and B = 4 for all the experiments
presented below.

6.2 Segmentation

To evaluate our segmentation algorithm, 50 prehensile motions from our database
of controlled grasps were randomly chosen and annotated as belonging to one of
five phases: rest, reaching, grasp, retraction, and rest. Reaching and retraction
are transitional phases. These manually segmented motions will be referred to as
reference (segmentation) as opposed to automatic or computed segmentation. In
terms of features, we have chosen to stack five frames [fi−6, fi−1, fi, fi+1, fi+6]
leading to a 75-dimensional feature vector and a search radius of r = 4.25 ·√

75 [cm] ≈ 37 [cm]. For better comparability with [6] we have converted the
intervals found by our segmentation into a sequence of cuts and regard each
two consecutive cuts as an interval. In order to assess the quality of a computed
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object: cylinder large, grasp type no. 32, subject 10

Fig. 5. Segmentation results for a number of annotated motion trials. For each trial,
the bottom row displays the reference annotation. The two middle rows compare the
reference annotation to our results and the top row depicts results of Vögele et al. [6].
We use ‘(nr)’ throughout figures and tables to abbreviate ‘no reprojection’ (of candidate
segment intervals).

segment interval Ic with respect to a reference segment interval Ir we use the
following measures:

Quality Measures The overlap union ratio relates the overlap of two segment

intervals Ir, Ic to the width of their union, |Ir∩Ic||Ir∪Ic| . In case of multiple computed

segment intervals overlapping a reference interval we use the largest computed
segment and disregard the others. Overlap union ratio is invariant to the position
within a complete overlap. It ranges from 0 (no overlap) to 1 (exact overlap).

The second measure (cut localisation) considers detected segments as a linear
list of segment cuts. It computes the distance of start/end frames in a reference
segment to the closest computed cut. The conversion from segment intervals to
cuts is straightforward and is computed by simply concatenating the interval
boundaries and dropping the motion’s first and last frame. Additionally, and
to avoid favouring over-segmentation, the total number of cuts in the complete
motion trial for both the computed and reference segmentation is reported.

Discussion of Results For a visual comparison of segmentation results refer
to Figure 5. Segments are colour-coded according to the best matched reference
segment. Segments found by our methods highly coincide with the reference
segments in both, number of found segments and position of these segments
within each motion trial. Our approach outperforms that of Vögele et al. [6]
which often misses segments with respect to the reference segmentation.

This tendency is confirmed in the evaluation of the segmentation quality
based on the aforementioned measures. Figure 6 shows histograms of absolute
cut location offsets and number of cuts identified in the motions from the three
methods. Our methods not only mainly find the correct number of (four) cuts
for each motion but also with little frame offset with respect to the reference
segmentation. Mean values and standard deviations of the quality measures used
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Fig. 6. Cut localisation (absolute number of frame offsets) and number of cuts with re-
spect to to the reference segmentation. Reference segmentations consist of four cuts.Top
row depicts results from the approach of Vögele et. al., the second row depicts our ap-
proach without reprojection and the last row is our approach with reprojection.

are listed in Table 2. Here, our methods reach an overlap union ratio of almost
0.84 with a very low standard deviation of 0.15. The combination of mean cut
localisation of our method with and without reprojection (5.09 frames and 4.85
frames with a standard deviation of 6.85 and 6.43 frames) and mean number of
found cuts (4.58 and 4.74 cuts with a standard deviation of 1.01 and 1.14 cuts)
further confirm that our segmentation closely matches the reference.

6.3 Clustering

For clustering motion trials we used an excerpt of the controlled transport
setup in our database. This excerpt covers all objects featured in the experi-
ment and was divided into ten sets based on the test person. Hence, each class
in this section represents an object. Unlike Krüger et al. [27], we chose to al-
low {(1, 1), (1, 2), (2, 1), (1, 4), (4, 1)} as warping steps to account for the mainly
static nature of our primitive data units. A segment Ia is considered to suffi-
ciently cover a second segment Ib if the off-diagonal area of Ia and Ib in their
SSSM is populated by at least 0.66%. For path coverage this refers to coverage
in the horizontal and vertical extent of a computed warping path.

As a side effect of how clusters are affiliated with motion trial classes, each
cluster represents one class, but classes may spread multiple clusters. In this sec-

Table 2. Mean and standard deviations for different methods and different evaluation
measures. Overlap union ratio ranges from 0 (no overlap) to 1 (exact overlap), cut
localisation is measured in frames and the number of cuts in cuts.

Overlap union ratio

Method Mean Std.

Vögele et al. 0.525 0.369
Our method (nr) 0.837 0.153
Our method 0.838 0.151

Cut localisation

Method Mean Std.

Vögele et al. 25.305 32.229
Our method (nr) 4.845 6.429
Our method 5.090 6.851

Number of cuts

Method Mean Std.

Vögele et al. 2.580 0.673
Our method (nr) 4.740 1.139
Our method 4.580 1.012



tion, we will present measures for assessing the quality of our clustering process
and discuss the results.

Quality Measures In order to evaluate the accuracy of this assignment we use
cluster purity as well as precision, recall, and F1-score of the clustering. Purity
measures the quality of a cluster by putting the number of correctly assigned
motion trials in relation to the total number of motion trials. This does not take
into account the number of clusters with respect to the number of actual classes,
so we also give the total number of clusters and the number of classes (objects)
to be represented by them.

Two trials should only be in the same cluster if they are similar and should
be in different clusters if they are dissimilar. Based on this, we can derive the
precision of the clustering as the number of (pairs of) trials correctly-grouped
into the same cluster with regard to the total number of (pairs of) trials in these
clusters. This quantifies the correctness of the separation of dissimilar trials
into different clusters, or, put differently, the amount of correct predictions.
Conversely, recall puts the number of trials correctly grouped into the same
cluster in proportion to the number of trials that should have been grouped into
the same cluster. This measures the success of avoiding separation of similar
trials into different clusters or the ability to group trials by similarity. Finally,
the F1-score combines precision and recall through their harmonic mean, thus
conveying the balance between the both.

Discussion of Results Figure 7 illustrates results obtained from clustering
motion trials while Table 3 provides quantitative results obtained from eval-
uating the motion trial clustering. As can be seen from the table all test sets
reached high cluster purity while the number of clusters nearly match the number
of classes/objects. It should be noted that because we are basing computation
of precision (and recall) on pairs of motion trials, incorrectly clustered trials
strongly influence precision. This effect is less pronounced for recall.

The bottom half of Table 3 illustrates that we can reach high precision and re-
call values in many cases for clustering by path coverage. The minimum value for
precision (recall) amounts to 0.71 (0.832). The top half of the table summarises
results for clustering by segment area coverage. Overall, values are slightly lower
than for clustering by path coverage. Minimum precision drops to 0.56, which is
due to the fact that three different classes are identified as equivalent, and hence
share the same cluster and heavily influence precision (compare Figure 7 (c)).

7 Limitations

Discussion of Segmentation Limitations While the approach of Vögele et al. [6]
tends to miss short segments in particular, both our proposed methods are more
likely to over-segment the motions (see Figure 8). This is due to the fact that
our algorithm has posed a relatively strict condition on how to find the segments



Table 3. Results of the clustering for all sets. The last column contains the mean (or,
where appropriate, the total) of the quality measures. We use # to abbreviate ‘number
of’. In the listing found counts the number of motion trials grouped into clusters with
other trials, correct is the number of correctly grouped similar trials, incorrect denotes
the number of incorrectly grouped dissimilar trials, and unidentified lists the number of
trials that could not be grouped with other trials. Because we do not measure precision
and recall based on single class division but based on pairs of motion trials, these values
cannot be directly derived from the number of found, correct, etc. trials.

segment area coverage

criterion set 01 set 02 set 03 set 04 set 05 set 06 set 07 set 08 set 09 set 10 mean/total

# clusters 11 10 14 12 9 11 10 9 12 11 10.9
# classes 11 11 11 11 9 11 11 11 11 11 10.8
purity 1.000 0.811 1.000 1.000 0.860 0.926 1.000 0.796 0.944 1.000 0.934

# trials 55 55 55 55 44 56 55 57 55 55 542
found 53 53 48 52 43 54 42 54 54 50 503
correct 53 43 48 52 37 50 42 43 51 50 469
incorrect 0 10 0 0 6 4 0 11 3 0 34
unidentified 2 2 7 3 1 2 13 3 1 5 39

precision 1.000 0.662 1.000 1.000 0.709 0.835 1.000 0.560 0.862 1.000 0.863
recall 1.000 0.961 0.837 0.939 0.890 0.944 1.000 0.953 0.887 1.000 0.941
F1-score 1.000 0.784 0.911 0.969 0.789 0.886 1.000 0.706 0.874 1.000 0.892

path coverage

criterion set 01 set 02 set 03 set 04 set 05 set 06 set 07 set 08 set 09 set 10 mean/total

# clusters 11 11 14 11 10 13 12 10 11 11 11.4
# classes 11 11 11 11 9 11 11 11 11 11 10.8
purity 1.000 0.906 1.000 1.000 0.976 0.963 1.000 0.889 0.855 0.980 0.957

# trials 55 55 55 55 44 56 55 57 55 55 542
found 54 53 48 50 42 54 48 54 55 51 509
correct 54 48 48 50 41 52 48 48 47 50 486
incorrect 0 5 0 0 1 2 0 6 8 1 23
unidentified 1 2 7 5 2 2 7 3 0 4 33

precision 1.000 0.797 1.000 1.000 0.934 0.918 1.000 0.766 0.710 0.949 0.907
recall 1.000 0.961 0.837 1.000 0.899 0.832 0.929 0.916 0.891 0.959 0.922
F1-score 1.000 0.871 0.911 1.000 0.916 0.873 0.963 0.834 0.790 0.954 0.911
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Fig. 7. Results of clustering motion sequences. Colouring is based on the number of
motions in a class grouped together and ranges from green (similar trials grouped
together) over yellow to red (trial grouped with dissimilar trials). Non-zero entries
contain the number of motions of a class in a cluster (left) and the number of motions
in that class (right). Multiple entries in a column represent a cluster covering multiple
classes, multiple entries in a row indicate a class split into multiple clusters.
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Fig. 8. Segmentation results illustrating over-segmentations by our algorithm. Repro-
jecting candidate intervals can help alleviating this issue (left and right).

during extraction of the diagonal contour. This leads to every gap in the SSSM
within a square-like region along the diagonal causing our algorithm to start a
new segment (segments stretch from the interior of the diagonal outwards). By
contrast, the approach by Vögele et al. [6] introduce cuts whenever the main
diagonal band is interrupted (segments wrap the around the diagonal structure
from the exterior).

Discussion of Clustering Limitations By basing our clustering essentially on fea-
ture similarity we implicitly assume that these features are able to discriminate
well between classes. For grasping this is not entirely true as the configuration
of the hand strongly depends on the size and shape of the object as well as on
the grasp applied to hold the object. This, on the one hand, can lead to our
clustering separating single classes into multiple clusters (Figure 7 (b)) and, on
the other hand, to grouping multiple classes of similar objects into the same
cluster (Figure 7 (c)).

8 Conclusion and Future Work

In this paper, we presented a database of prehensile movements and a novel
method for temporal segmentation of articulated hand motion. One of our goals
was to present an effective method for segmentation and clustering of hand
data. Our experiments confirm a high coincidence of our results with manual
segmentation (cf. Section 6.2). Also, comparison to the clustered results of Vögele
et al. [6] shows that both our evaluation methods (path coverage and segment
coverage) yield higher accuracy scores (refer to Table 3). Particularly, the recall
values are convincing compared to the relatively poor results by Vögele at al.
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