

# Mathematisch-algorithmische Grundlagen für Data Science Lösungen zu Aufgabenblatt 1

## Aufgabe 1 (Lineare Unabhängigkeit)

(a) Zeigen Sie, dass die Vektoren

$$\mathbf{v}_1 = \begin{pmatrix} -1\\2\\3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 3\\-4\\1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 2\\4\\-1 \end{pmatrix}$$

linear unabhängig sind.

(b) Zeigen Sie, dass die Vektoren

$$\mathbf{v}_1 = \begin{pmatrix} -2\\1\\1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$

linear abhängig sind.

#### Lösung:

(a) Wir betrachten das LGS

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3 = \mathbf{0},$$

also

$$\left(\begin{array}{ccc|c} -1 & 3 & 2 & 0 \\ 2 & -4 & 4 & 0 \\ 3 & 1 & -1 & 0 \end{array}\right).$$

Umformung ergibt

$$\implies \begin{pmatrix} -1 & 3 & 2 & 0 \\ 0 & 2 & 8 & 0 \\ 0 & 0 & -35 & 0 \end{pmatrix}$$

$$\Rightarrow \lambda_3 = 0 \Rightarrow \lambda_2 = 0 \Rightarrow \lambda_1 = 0.$$

(b) Es gilt

$$\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = \mathbf{0}.$$

also lässt sich  $\mathbf{0}$  auf nicht-triviale Weise darstellen. Damit sind die Vektoren  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$  linear abhängig.

### Aufgabe 2 (Lösbarkeit von linearen Gleichungssystemen)

Bestimmen Sie, ob die folgenden linearen Gleichungssysteme keine, genau eine oder unendlich viele Lösungen besitzen.

(a) 
$$2x_1 - 3x_2 = 11 \\
5x_1 - x_2 = 8 \\
x_1 - 5x_2 = 16$$

(c) 
$$x_1 + 2x_2 + 3x_3 + 4x_4 = 1$$

$$-2x_1 - 4x_2 - 6x_3 - 8x_4 = -2$$

$$3x_1 + 6x_2 + 9x_3 + 12x_4 = 2$$

#### Lösung:

(a) Es gilt

$$r(\mathbf{A}) = r \begin{pmatrix} 2 & -3 \\ 5 & -1 \\ 1 & -5 \end{pmatrix} = 2,$$

weil die beiden Spaltenvektoren linear unabhängog sind und  $r(\mathbf{A}) \leq 2$  gelten muss. Weiterhin gilt

$$\det(\mathbf{A}|\mathbf{b}) = \det\begin{pmatrix} 2 & -3 & | & 11 \\ 5 & -1 & | & 8 \\ 1 & -5 & | & 16 \end{pmatrix} 
= 2 \cdot (-1) \cdot 16 + 11 \cdot 5 \cdot (-5) + 1 \cdot (-3) \cdot 8 - 11 \cdot (-1) \cdot 1 - 8 \cdot (-5) \cdot 2 - 16 \cdot (-3) \cdot 5 
= -32 - 275 - 24 + 11 + 80 + 240 
= 0.$$

Also sind die Spaltenvektoren von  $\mathbf{A}|\mathbf{b}$  linear abhängig. Daraus folgt  $r(\mathbf{A}|\mathbf{b}) = r(\mathbf{A}) = 2$ , also eindeutig lösbar.

- (b) Es gilt  $\det(\mathbf{A}|\mathbf{b}) = -24 \neq 0$ . Daraus folgt  $r(\mathbf{A}|\mathbf{b}) = 4$ . Wegen  $r(\mathbf{A}) \leq 3$  ist damit das Gleichungssystem nicht lösbar.
- (c)  $r(\mathbf{A}) = 1$ , denn die Spaltenvektoren von  $\mathbf{A}$  sind alle ein Vielfaches von  $\mathbf{a}^1$ . Dagegen ist  $\mathbf{b}$  kein Vielfaches von  $\mathbf{a}^1$ , somit gilt  $r(\mathbf{A}|\mathbf{b}) = 2$ . Also nicht lösbar.

# Aufgabe 3 (Berechnung der Determinante)

Berechnen Sie für die Matrix

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 1 & -2 & -3 & 1 \\ -2 & 6 & 9 & 0 \\ 4 & -3 & -2 & 5 \end{pmatrix}$$

die Determinante det(A) mit Hilfe der Leibniz-Formel.

#### Lösung:

| Nr. | Permutation | Vorzeichen | Produkt                              | Ergebnis |
|-----|-------------|------------|--------------------------------------|----------|
| 1   | (1234)      | +          | $1 \cdot (-2) \cdot 9 \cdot 5$       | -90      |
| 2   | (1243)      | _          | $1 \cdot (-2) \cdot 0 \cdot (-2)$    | 0        |
| 3   | (1324)      | _          | $1 \cdot (-3) \cdot 6 \cdot 5$       | 90       |
| 4   | (1342)      | +          | $1 \cdot (-3) \cdot 0 \cdot (-3)$    | 0        |
| 5   | (1423)      | +          | $1 \cdot 1 \cdot 6 \cdot (-2)$       | -12      |
| 6   | (1432)      | _          | $1 \cdot 1 \cdot 9 \cdot (-3)$       | 27       |
| 7   | (2134)      | _          | $(-1) \cdot 1 \cdot 9 \cdot 5$       | 45       |
| 8   | (2143)      | +          | $(-1) \cdot 1 \cdot 0 \cdot (-2)$    | 0        |
| 9   | (2314)      | +          | $(-1)\cdot(-3)\cdot(-2)\cdot 5$      | -30      |
| 10  | (2341)      | _          | $(-1)\cdot(-3)\cdot0\cdot4$          | 0        |
| 11  | (2413)      | _          | $(-1) \cdot 1 \cdot (-2) \cdot (-2)$ | 4        |
| 12  | (2431)      | +          | $(-1) \cdot 1 \cdot 9 \cdot 4$       | -36      |
| 13  | (3124)      | +          | $(-1) \cdot 1 \cdot 6 \cdot 5$       | -30      |
| 14  | (3142)      | _          | $(-1) \cdot 1 \cdot 0 \cdot (-3)$    | 0        |
| 15  | (3214)      | _          | $(-1)\cdot(-2)\cdot(-2)\cdot 5$      | 20       |
| 16  | (3241)      | +          | $(-1)\cdot(-2)\cdot0\cdot4$          | 0        |
| 17  | (3412)      | +          | $(-1) \cdot 1 \cdot (-2) \cdot (-3)$ | -6       |
| 18  | (3421)      | _          | $(-1) \cdot 1 \cdot 6 \cdot 4$       | 24       |
| 19  | (4123)      | _          | $1 \cdot 1 \cdot 6 \cdot (-2)$       | 12       |
| 20  | (4132)      | +          | $1 \cdot 1 \cdot 9 \cdot (-3)$       | -27      |
| 21  | (4213)      | +          | $1 \cdot (-2) \cdot (-2) \cdot (-2)$ | -8       |
| 22  | (4231)      | _          | $1 \cdot (-2) \cdot 9 \cdot 4$       | 72       |
| 23  | (4312)      | _          | $1 \cdot (-3) \cdot (-2) \cdot (-3)$ | 18       |
| 24  | (4321)      | +          | $1 \cdot (-3) \cdot 6 \cdot 4$       | -72      |
|     |             |            | Σ                                    | 1        |

## Aufgabe 4 (Cramersche Regel)

Lösen Sie das folgende lineare Gleichungssystem mithilfe der Cramerschen Regel (Satz 1.26):

$$\begin{array}{rclrcrcr}
-2x_1 & + & 3x_2 & + & 3x_3 & = & 4 \\
5x_1 & - & 2x_2 & - & 4x_3 & = & 2 \\
x_1 & + & x_2 & - & x_2 & = & -2
\end{array}$$

Lösung: Es gilt:

$$\det(\mathbf{A}) = \begin{vmatrix} -2 & 3 & 3 \\ 5 & -2 & -4 \\ 1 & 1 & -1 \end{vmatrix} = -4 - 12 + 15 + 6 - 8 + 15 = 12$$

$$\det(\mathbf{A}_1) = \begin{vmatrix} 4 & 3 & 3 \\ 2 & -2 & -4 \\ -2 & 1 & -1 \end{vmatrix} = 8 + 24 + 6 - 12 + 16 + 6 = 48$$

$$\det(\mathbf{A}_2) = \begin{vmatrix} -2 & 4 & 3 \\ 5 & 2 & -4 \\ 1 & -2 & -1 \end{vmatrix} = 4 - 16 - 30 - 6 + 16 + 20 = -12$$

$$\det(\mathbf{A}_3) = \begin{vmatrix} -2 & 3 & 4 \\ 5 & -2 & 2 \\ 1 & 1 & -2 \end{vmatrix} = -8 + 6 + 20 + 8 + 4 + 30 = 60$$

$$x_1 = \frac{48}{12} = 4$$
,  $x_2 = \frac{-12}{12} = -1$ .  $x_3 = \frac{60}{12} = 5$ .

# Aufgabe 5 (Leibniz-Formel und Cramersche Regel in Python)

- (a) Implementieren Sie die Leibniz-Formel zur Berechnung der Determinate einer quadratischen Matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$ .
  - Hinweis: Mit der Funktion itertools.permutations(range(n)) können Sie alle Permutationen für die Menge  $\{0, 1, \ldots, n-1\}$  erzeugen.
- (b) Implementieren Sie die Cramersche Regel zur Lösung eines linearen Gleichungssystems  $\mathbf{A}\mathbf{x} = \mathbf{b}$  mit einer regulären Matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$  in Python.

Hinweis: Nutzen Sie Ihre Funktion aus Teil (a).

Lösung: siehe Homepage